A Space-filling 3D Serial Polyaxis

Fig. 3. Serial polyaxis <3*3*3> and recursive serial polyaxis <<Module>*2*2*2> for modules <A> to <F>. Spheres in odd-numbered units in [9 × 3] and [3 × 3 × 3] are start/end points of the space-filling serial polyaxis. The space-filling serial polyaxis <2*2*2> is a mother pattern for a recursive serial polyaxis.

5. Serial Polyaxis by Nested Combination

A nested combination of <<2*2*2>/<3*3*3>> serial polyaxis can be constructed such that a <2*2*2> serial polyaxis is obtained in a <3*3*3> serial polyaxis, where the start and end points are connected (Fig. 4; IIIa + IIIb \rightarrow IIIc). A nested combination of <2*2*2>/<3*3*3>> serial polyaxes can also be constructed from a <4*4*4>2*2*2> serial polyaxis as a <3*3*3>3*3*3> serial polyaxis with start and end points connected (Fig. 4; IIe \rightarrow IIIe \leftarrow Ie). This approach is applicable for any nested combination of serial polyaxes <<p*q*r>/limits combination of modules is possible, affording a nested combination serial polyaxes. For example, there are 6 patterns for the <math><3*3> module (Fig. 4; Ia).