Packing and Minkowski Covering of Congruent Spherical Caps on a Sphere, II

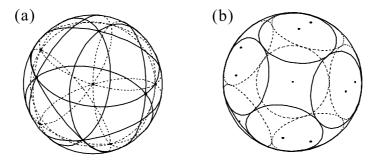


Fig. 5. (a) Our sequential covering for *N* = 10. (b) Our solution of Tammes problem for *N* = 10. Both viewpoints are (0, 0, 10). In this example, the coordinates of the centers are respectively (0, 0, −1), (0.26335, −0.87585, −0.40439), (0.91458,0, −0.40439), (0.26335, 0.87585, −0.40439), (−0.76292, 0.50440, −0.40439), (−0.77575, −0.57681, −0.25593), (−0.13883, −0.78326, 0.60599), (−0.79006, 0.092588, 0.60599), (0.084546, 0.74290, 0.66405), and (0.735778, −0.13295, 0.66405).

quadrangle on S. Then, from Corollary of Theorem 2 in I and the relations for four vertices of $(W_8)^c$, we find that $d_s(K_{11}, K_{12})$ is equal to the spherical distance of the largest interval in the uncovered region $(W_8)^c$. Therefore, \bar{r}_9 is equal to (10). In addition, we find that $\bigcup_{\nu=1}^9 C_{\nu}$ is in an extreme state if and only if M_9 is put on the point $K_{12} \in \partial C_8$. Therefore, we choose M_9 on K_{12} , and then K_{11} is the unique uncovered point on S.

For N = 10, we initially assumed that r should be in the range $(\tan^{-1}2, \cos^{-1}(1/3)]$. Then, as a result of the investigation, our upper bound r_{10} , (10), has fallen within the range $(\tan^{-1}2, r_9]$. However, one might suspect that the fact is due to the assumption. So, if r is in the range $(0, \tan^{-1}2]$, we examine whether W_9 is able to cover S except for finite points. When r is assumed to be equal to $\tan^{-1}2$, we find that the set W_9 leave an uncovered region on S. For its detail, refer to the consideration of Subsec. 3.2. Furthermore, for $0 < r < \tan^{-1}2$, the uncovered region would become still bigger. Hence, the upper bounds r_{10} cannot be in the range $(0, \tan^{-1}2]$ as in the cases of N = 8 and 9 in I. Thus, we note that our initial assumption $\tan^{-1}2 < r \le r_9$ is also confirmed $(r = \tan^{-1}2)$ is excluded from the above consideration).

As a result of consideration above, the set W_9 covers S except for K_{11} . Therefore, when M_{10} is put at the point K_{11} , the whole of S is covered by $\bigcup_{\nu=1}^{10} C_{\nu}$ which contains W_9 (see Fig. 5(a)). Thus, our consideration that our r is equal to the upper bound r_{10} (a side-length of the spherical square $K_9K_{11}K_{12}K_{10}$ which satisfies (9)) is confirmed and (10) is certainly the upper bound for N = 10.

3.2. N = 11 and 12

It is expected that the solution r_{11} for N = 11 should not be larger than r_{10} . Then, we assume $r_{11} \le r \le r_{10}$. Further, we assume $\tan^{-1} 2 \le r_{11}$. Hence, the relations (7) and (8) hold because of the assumption $\tan^{-1} 2 \le r_{11} \le r \le r_{10}$. Then, we can use the same configuration of the first five spherical caps of the case N = 10. When the fifth spherical cap C_5 is put on the sphere, in the same way as the foregoing subsection, a quadrilateral kite $K_8K_4K_6K_7$ on the sphere might be formed as the uncovered region. Further, because of the condition that

167