

Fig. 8. (a) Our sequential covering for N = 12. (b) Our solution of Tammes problem for N = 12. Both viewpoints are (0, 0, 10). In this example, the coordinates of the centers are respectively (0, 0, -1), (0.27639, -0.85065, -0.44721), (0.89443,0, -0.44721), (0.27639, 0.85065, -0.44721), (-0.72361, 0.52573, -0.44721), (0.27639, -0.85065, 0.44721), (-0.72361, 0.52573, -0.44721), (-0.27639, -0.85065, 0.44721), (-0.89443,0, 0.44721), (-0.27639, 0.85065, 0.44721), (-0.89443,0, 0.44721), (-0.27639, 0.85065, 0.44721), (-0.89443,0, 0.44721), (-0.27639, 0.85065, 0.44721), (-0.89443,0, 0.44721), (-0.27639, 0.85065, 0.44721), (-0.89443,0, 0.44721), (-0.27639, 0.85065, 0.44721), (-0.89443,0, 0.44721), (-0.27639, 0.85065, 0.44721), (-0.89443,0, 0.44721), (-0.27639, 0.85065, 0.44721), (-0.89443,0, 0.44721), (-0.27639, 0.85065, 0.44721), (-0.89443,0, 0.80)

 $\bigcup_{v=1}^{l_0} C_v$ is in an extreme state automatically and that *S* is covered by the set W_{10} except for two points K_4 (or K_{11}) and *P* (the center point of spherical regular pentagon $K_9K_4K_6K_7K_{10}$) from the relation (14). At this time, we see that *P* is the cross point of perimeters ∂C_7 , ∂C_8 , and ∂C_9 . Furthermore, as a result of calculation by using the coordinates of K_9 , K_{10} , and K_7 for $r = \tan^{-1}2$, *P* is just the north pole (0, 0, 1) certainly. Therefore, if M_{11} is put on $K_4 \in$ ∂C_{10} , $\bigcup_{v=1}^{l1} C_v$ is in an extreme state and *P* is a unique uncovered point on *S*. Then, in order to cover whole of *S*, we have to put one more cap at *P*. In other words, when $r = \tan^{-1}2$, according to our sequential covering, we can put twelve caps on *S* under Minkowski covering. Therefore, M_{11} and M_{12} are put on K_4 and *P*, respectively, then $\bigcup_{v=1}^{l2} C_v$ which contains W_{11} covers the whole of *S*. Namely, we are able to see that $d_s(P, K_4) = \tan^{-1}2 = \overline{r_{11}}$. Thus, we consider that $\tan^{-1}2$ is the upper bound r_{12} for N = 12. As a result, we find that the positions of caps of our sequential covering for N = 12 correspond to the regular icosahedral vertices (see Fig. 8(a)). Therefore, if all spherical caps of our sequential covering for N =12 are replaced by half-caps, all of those half-caps contact with other five half-caps and there is no space for those half-caps to move.

Then, how about r_{11} ? From the results of N = 10 and 12, it becomes obvious that our initial assumption $r_{12} = \tan^{-1}2 \le r \le r_{10}$ is indispensable. At the time the center M_6 is placed on the point K_8 , we had to place five more caps of the angular radius r on the uncovered region $(W_6)^c$ under the Minkowski covering. Then, from the above considerations, we see that the maximal spherical regular pentagon of side-length r $(r_{12} \le r \le r_{10})$ on $(W_6)^c$ is identical with the spherical regular pentagon $K_9K_4K_6K_7K_{10}$ which satisfies the relation (14). So, we conclude that r_{11} is equal to $r_{12} = \tan^{-1}2$ and use the same configuration of the first eleven spherical caps of the case N = 12. However, when $r_{11} = \tan^{-1}2$, our sequential covering for N = 11 covers S except for the point P. But, if only the eleventh cap C_{11} is replaced by a closed cap, our eleven caps can completely cover the whole of S under the Minkowski condition. Thus, for N = 11, we need a special care as above.

171