
22 K. Miura et al.

Fig. 6. A time series of the edge plane structure found at Du = 1.5 × 10−4 and Dv = 6.0 × 10−4. The lower half of distributions of u at the 1600th step
(a), 1700th step (b), 1900th step (c), and 5000th step (d) are visualized. The other parameters were a = 0.1, b = 1.0, ε = 1.0 × 10−4, 	x = 0.01,
and 	t = 1.0 × 10−4.

Fig. 7. A three-dimensional Turing pattern found at a = 0.2, b = 5.0, ε = 1.0 × 10−3, 	x = 0.01, 	t = 1.0 × 10−5, Du = 1.0 × 10−2,
Dv = 4.0 × 10−2, and N = 100. The lower half of the isosurface u = 0.5 at the 300000th step is visualized.

Fig. 8. Nullclines of Eqs. (3) and (4) at Dv = 1.0 (a), Dv = 4.0 (b), and Dv = 12.0 (c). 	x = 0.01 and a = 0.1 in each case. The solid lines
indicate that vi+1 + vi−1 is small (0.0), and the dashed lines show that vi+1 + vi−1 is sufficiently large (0.2). Sufficiently large discreteness results in
a non-uniform number of stable points in space according to distributions of the inhibitor value v, which almost depends on the activator value u (a).
The number of stable points is identical in space in (b) and (c).

system (see details in Kitamori and Kitamura (1996)). If
a dynamic system shows an exponential decay, the quanti-
tative state of the system becomes 1/e after τ passes. In the
FitzHugh–Nagumo model (Eqs. (1) and (2)), the estimated
value of characteristic τ is 0.1 for parameters that yield both
edge detection (Figs. 4 to 6) and a Turing pattern (Fig. 7).
We also estimated τ for a Turing pattern generated by the
Oregonetor model (refer figure 12 in Nomura et al., 1997)
and obtained τ = 1.0. In each case (edge detection, the Tur-
ing pattern of the FitzHugh–Nagumo model, and that of the
Oregonetor models), states of the patterns were still non-
stationary just as τ passed, but settled into steady patterns
after around tens of times τ passed in each case.
4.2 A brief theory of extracting the edge structures in

the FitzHugh–Nagumo model
Here, we consider the FitzHugh–Nagumo system in one

spatial dimension, for better understanding of the discus-
sion. It seems that the generality of the theory of the one-

dimensional system is retained when it is adopted in three
dimensions. In addition, we assume that Du is zero. We
have confirmed that edge structures also appear in this case.
First, we adopt a central difference in space and obtain the
following Eqs. (3) and (4),

dui

dt
= 1

ε
{ui (ui − a)(1 − ui ) − vi }, (3)

dvi

dt
= r ′(vi+1 − 2vi + vi−1) + ui − bvi , (4)

where r ′ represents Dv/(	x)2. The subscript i = 1, 2,

. . . , N is a spatial index. Equations (5) and (6) represent
nullclines of Eqs. (3) and (4), respectively (see also Fig. 8),

vi = ui (ui − a)(1 − ui ), (5)

vi = 1

b + 2r ′ ui + r ′(vi+1 + vi−1)

b + 2r ′ , (6)

where b, r ′, vi+1, and vi−1 are positive.




