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Fig. 2. The emergence of a two-cluster state. The sequence of the matrix graphs displays the time development of the state of the dynamical system,
{φi (t), ki j (t)}. In this state, the phases of the oscillators, φi (t), are organized into two synchronized groups as shown in the diagonal blocks in
the matrix graphs. The coupling weights among the oscillators, ki j (t), shown in the off-diagonal blocks, take positive couplings (red) within a
synchronized group and negative couplings (blue) between the different groups. This two-cluster state emerges in the case of β ∼ −π/2, with which
the evolution rule of the coupling weight has a similar effect of like-and-like rule.
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Fig. 3. The emergence of a coherent state with a fixed phase relation. A sequential pattern of the oscillators are organized, in which a fixed phase
relationship is maintained over a long period. This state is observed for the parameter β ∼ 0, with which the evolution rule of the coupling weight is
strongly dependent on the order of the phases of oscillators, in a similar way as the spike-timing dependent plasticity in neural networks.

with frustration. These distinct dynamical behaviors can be
characterized by mutual information between the initial and
final phase patterns, and by entropy of the final phase pat-
tern. In Fig. 5, the mutual information is largest for the
coherent state. Since mutual information measures the in-
formation that the initial and final states share, the initial
phase pattern can be most easily inferred from the final
one in the coherent state. This suggests that the coherent
state preserves a phase pattern through the co-evolving dy-
namics. A similar situation is observed for the case of the
two-cluster state, except that the entropy is much smaller
than that for the coherent state. This is because the possible
phase patterns are restricted for the two-clustered state. For
the chaotic state, the mutual information takes almost zero
and the entropy is almost maximum. This fact implies that
the information of the initial state is lost with time and the
system is wandering over all possible phase patterns.

2. Firing Activity of Optimized Neuronal Net-
works

In the previous section, we descibed a simplified model
of co-evolving dynamics. In this simple model, the be-
havior of the system is reduced to a few essential param-
eters. Thus this model allowed us to understand the behav-
ior of the co-evolving systems without knowing the details
of the systems. However, because this model is an abstract
model, more specific models are needed to understand the
detailed behavior of individual systems, such as our brain.
As an example, here we describe a specific neuronal net-
work model to explain the activity of the neuronal networks
in the brain. This neuronal network model is a top-down
model, whose dynamics we derived to maximize an objec-
tive function, which is the mutual information in this case.
It is in a sharp contrast to the model in the previous sec-
tion, which explained the behavior of the co-evolving sys-
tems by using two bottom-up rules (Eqs. (1) and (2)). The




