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Fig. 7. Temporal evolutions of the relative phases ψi obtained from the simulation of Eq. (14) when the target state is (i) unidirectional phase-shifted
state, (ii) 2-cluster state, and (iii) “v-type” phase-shifted state. The initial condition is set at ui = vi = 1.5 for all i . The definition of the relative phase
ψi is described in the text. Since the relative phase is 2π -periodic, it is expressed within the range of (i)(iii) [−0.05π, 1.95π ] and (ii) [−0.95π, 1.05π ].

of the harmonics in which q f (ψ) has nonnegligible Fourier
components.

The functional form of the target coupling function q̃(ψ),
the positions of the nodes sγ and sβ , and the parameter ε′

βγ

are selected such that the target state is obtained. They are
explored through the simulation of Eq. (8) by trial and er-
ror, with taking notice that Max[|Ak |, |Bk |] does not have
a large value. Figure 3 shows the temporal evolutions of
the phase difference between the first and i th oscillators ob-
tained from the simulation of Eq. (8) with the initial con-
dition of φi = 0 for all i when q̃(ψ) and the positions of
the nodes are given as shown in Figs. 4 and 5, respectively.
Here, ε′

βγ is set at 0.05 when the measurement and stimu-
lation nodes in Fig. 5 are connected by an arrow, otherwise
ε′
βγ = 0. It is found that the target states described above

are actually obtained under these conditions. ε′
βγ , because

changing only q̃(ψ) is often insufficient to obtain the target
state.

Next, the parameters τm and �m are determined using
the obtained coupling functions q f (ψ) and q̃(ψ). Fig-
ure 6 shows the relation between α and

∑2M+1
m=1 |�m | ob-

tained from Eqs. (12) and (13) in the case of q̃(ψ) =
sinψ + 0.5sin2ψ + 0.5cosψ (Fig. 4(iii)). It is found
that

∑2M+1
m=1 |�m | varies significantly with α. Since we

need to select the parameter sets of τm and �m such that∑2M+1
m=1 |�m | can be possibly minimized, we have selected

them using the value of α where
∑2M+1

m=1 |�m | becomes min-
imum.

Then, Eq. (14) is simulated using the obtained values of
τm and �m . Figure 7 shows the temporal evolutions of the
relative phases of the oscillators. Here, the relative phase
of the i th oscillator ψi (i = 2, 3, . . ., and 50) is defined
as ψi (t

(K )

1 ) = 2π(t (K+1)

1 − t (K ′)
i )/(t (K+1)

1 − t (K )

1 ) + 2πn,

where n is an arbitrary integer, and t (K )

1 and t (K ′)
i denote

the time when the first and i th oscillators take maximum
values of u at the K th and K ′th cycles, respectively, with
K and K ′ satisfying t (K )

1 ≤ t (K ′)
i < t (K+1)

1 . It is found

that the states obtained through the feedback are generally
in good agreement with those obtained from the simulation
of Eq. (8) (Fig. 3), although not completely. Thus, the
dynamical behaviors are well controlled by the feedback.

4. Discussion
We have proposed a generalized method to control the

dynamics of coupled oscillators by designing the coupling
function through multi-linear feedback, and have confirmed
its validity through a simulation of one-dimensionally-
arranged Bonhoeffer-van der Pol oscillators. Our previous
theory (Kano and Kinoshita, 2008) is only applicable to a
special case where the oscillators are coupled to each other
by the same coupling strength and the observable is mea-
sured uniformly from all of the oscillators with the feedback
signals uniformly applied to all of them. In contrast, the
present theory is even applicable to systems where the cou-
pling strengths, the observables, and the applied feedback
signals are not uniform. Such generalization is extremely
important, because they are not uniform in most of actual
coupled-oscillator systems. Hence, it is expected that the
present method will lead to various practical applications.

The most characteristic point of the present method is
that it requires only the outputs from several measurement
nodes to determine the delays and the strengths of feedback
signals, whereas the method reported by Kiss et al. (2007)
and Kori et al. (2008) required an individual output from
each oscillator. This is extremely advantageous because it
is often practically difficult to measure individual outputs
from all oscillators and to process them rapidly, particularly
when the number of oscillators becomes large. Thus, the
present method will eventually be used without practical
restrictions.

When Max[|Ak |, |Bk |] is large, the present method is
not applicable because

∑2M+1
m=1 |�m | becomes large. Hence,

q̃(ψ) cannot have large Fourier components in the harmon-
ics where q f (ψ) has small components. In spite of such
restriction, in most of cases we can select q̃(ψ) that leads




