

Fig. 1. High and low degeneracy amino acids.

Table 1. The Nicomachus Triangle, T(n, k).

| 1  |    |     |      |     |     |     |
|----|----|-----|------|-----|-----|-----|
| 2  | 3  |     |      |     |     |     |
| 4  | 6  | 9   |      |     |     |     |
| 8  | 12 | 18  | 27   |     |     |     |
| 16 | 24 | 36  | 54   | 81  |     |     |
| 32 | 48 | 72  | 108  | 162 | 243 |     |
| 64 | 96 | 144 | 216  | 324 | 486 | 729 |
|    |    |     | etc. |     |     |     |

Table 2. Pascal's Triangle.

| 1 |   |      |   |   |
|---|---|------|---|---|
| 1 | 1 |      |   |   |
| 1 | 2 | 1    |   |   |
| 1 | 3 | 3    | 1 |   |
| 1 | 4 | 6    | 4 | 1 |
|   |   | etc. |   |   |

bit strings of adjacent codons that make up an amino acid necessarily differ by a single bit because of the nature of binary reflecting Gray code.

Notice that in M<sub>2</sub> the natural numbers 4, 6, 9 appear while in  $M_3$  the natural numbers 8, 12, 18, 27 appear, with each row and column having the same sequence of positive integers with no integer appearing adjacent to itself in a row or column. These sequences come from a triangle of numbers attributed to the 2nd century AD Syrian mathematician Nicomachus (Kappraff, 2000) and represent successive sequences of musical fifths. The Nicomachus Triangle, T(n, k), is reproduced in Table 1 where the integers in the *n*-th row are  $\{2^{n-k}3^k, 0 \le k \le n\}; n \ge 0$ . Here if the central integer 6 is thought to be the length of a string representing a fundamental tone, then 4 and 9 of row 3 represent the string lengths corresponding to rising and falling musical fifths, ratios of 2:3 and 3:2. Also the fifth row represents the string lengths that give rise to a pentatonic scale with fundamental string length of 36 units while the integers in row 7 represent string lengths of a heptatonic scale with 216 as the string length of the fundamental. The

| 27 | 18 | 12 | 18 | 12 | 8  | 12 | 18 |
|----|----|----|----|----|----|----|----|
| 18 | 27 | 18 | 12 | 8  | 12 | 18 | 12 |
| 12 | 18 | 27 | 18 | 12 | 18 | 12 | 8  |
| 18 | 12 | 18 | 27 | 18 | 12 | 8  | 12 |
| 12 | 8  | 12 | 18 | 27 | 18 | 12 | 18 |
| 8  | 12 | 18 | 12 | 18 | 27 | 18 | 12 |
| 12 | 18 | 12 | 8  | 12 | 18 | 27 | 18 |
| 18 | 12 | 8  | 12 | 18 | 12 | 18 | 27 |

(a)

| 27 | 18 | 18 | 12 | 18 | 12 | 12 | 8  |
|----|----|----|----|----|----|----|----|
| 18 | 27 | 12 | 18 | 12 | 18 | 8  | 12 |
| 18 | 12 | 27 | 18 | 12 | 8  | 18 | 12 |
| 12 | 18 | 18 | 27 | 8  | 12 | 12 | 18 |
| 18 | 12 | 12 | 8  | 27 | 18 | 18 | 12 |
| 12 | 18 | 8  | 12 | 18 | 27 | 12 | 18 |
| 12 | 8  | 18 | 12 | 18 | 12 | 27 | 18 |
| 8  | 12 | 12 | 18 | 12 | 18 | 18 | 27 |

(b)



(c)

Fig. 2. (a) RNA matrix of amino acids—Gray Code ordering. (b) RNA matrix of amino acids—Binary ordering. (c) "The Music of the Genes". A quilt pattern by Elaine Ellison.