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Fig. 2. Tiling by convex pentagons that belong to both type 1 and type 7.
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Fig. 3. (a) Edge-to-edge tiling by convex pentagonal tiles that belong to type 1. (b) Edge-to-edge tiling by convex pentagonal tiles that belong to type 2.

common (Grünbaum and Shephard, 1987). In an edge-
to-edge tiling by polygons, the number of adjacents of a
polygon is equal to its number of edges. Therefore, from
Statement 3.3.5 (“A normal tiling in which every tile has
the same number of adjacents is balanced”) in Grünbaum
and Shephard (1987), the tiling J is balanced. Thus, we
derive the limit

lim
ρ→∞

N (F)

P(F)
= 3

2
(2)

by using Euler’s Theorem for Tilings (see Statement 3.3.3
in Grünbaum and Shephard (1987)). If a node belongs to t
pentagons from F , then the share of each of these pentagons
for this node is 1/t . Since every pentagon in F has m nodes
of valence 3 and 5 − m nodes of valence k, we obtain

N (F) = (P(F1) + P(F2))

(
m

3
+ 5 − m

k

)
+ ε, (3)

where ε is the sum of difference between the contribu-
tions of the vertices of all boundary pentagons for F and
ε/P(F) → 0 as ρ → ∞ . From (1), (2), and (3), as
ρ → ∞,

m

3
+ 5 − m

k
= 3

2
. (4)

Let K (F) be the sum of valences of N (F) nodes in F .
Then, the limit limρ→∞ K (F)/N (F) is called the average
valence of nodes in J . From Proposition in Sugimoto
and Ogawa (2006b), the average valence of nodes in J
is 10/3 ≈ 3.33 · · ·. That is, since the average valence is
not an integer, there does not exist the balanced tilings by
pentagons with all nodes of the same valence. Hence 0 <

m < 5. In addition, from Proposition 2.1 (“In each edge-
to-edge tiling of the plane by uniformly bounded pentagons,
there exists a tile with at least three nodes of valence three”)
in Bagina (2004), a pentagon in J has at least three nodes
of valence three. Therefore, 3 ≤ m < 5.

For m = 3, from (4),
3

3
+ 2

k
= 3

2
. Therefore, k = 4.

Thus, (m, k) = (3, 4).

For m = 4, from (4),
4

3
+ 1

k
= 3

2
. Therefore, k = 6.

Thus, (m, k) = (4, 6). �

3. Other Property
In this section, other property which can be obtained by

the same proof as Proposition 1 is shown.

PROPOSITION 2 Let Pa be a pentagon that has m1 nodes
of valence 3 and 5 − m1 nodes of valence k, and Pb be a
pentagon that has m2 nodes of valence 3 and 5 − m2 nodes
of valence k (0 ≤ m2 < m1 ≤ 5, k ≥ 4), respectively. If
an edge-to-edge tiling J1 that is formed of pairs of Pa and
Pb is normal, then (m1, m2, k) = (4, 2, 4), (m1, m2, k) =
(5, 1, 4), or (m1, m2, k) = (5, 3, 6).

Proof of Proposition 2. The number of nodes of the tiling
in F on J1 is

N (F) = (P(F1) + P(F2))

·
(
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)
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+ε (5)

where ε/P(F) → 0 as ρ → ∞. From (1), (2), and (5), as
ρ → ∞,(

m1

3
+ 5 − m1

k

)
+

(
m2

3
+ 5 − m2

k

)
= 3. (6)

From Proposition 2.1 in Bagina (2004), one of m1 and m2

is certainly equal to three or more. Therefore, in this report,
we assume 3 ≤ m1 ≤ 5, 0 ≤ m2 < 5 and m2 < m1.




