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Fig. 5. (Xél), Xf)z)) fora = 3.8and D = 0.433 in Eq. (24) are plotted, when |X§,1) — X§,2)| becomes smaller than the threshold | = 10~3 within 20

stepsin (a). (b) isablowup of (a).
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(b) a= 252 and K = 0.55

Relaxation time n satisfying |1/fr(12) - 1/;,(,1)| < 1073 as a first passage time of initial points (m(wéz)), 3(%2))) to the complete chaos

synchronization are plotted in agray scalefora = 2.56 and K = 0.6in(a),a = 2.52 and K = 0.55in (b).

4. Relaxation Times and Complex Basin Struc-
ture
For thelogistic map f (x) = ax(1 — x), abidirectionally
coupled system consisting of two identical chaotic oscilla-
tors X and X

Xy = FOE) + KL X@) — £ X, -
X@ = f(XP) + K[ F(XP) - f(XP)]

is considered, where K and D respectively denote the cou-
pling strength and the largest Lyapunov exponent of the lo-
gistic map with K = (1 + exp(—D))/2. For large enough
K, the complete chaos synchronization occurs (Fujisaka
and Yamada, 1983; Yamada and Fujisaka, 1983). In Fig. 5,
initial points (X", X{?) fora = 3.8 and D = 0.433 are

plotted, when the difference | XY — X2 | becomes smaller
than the threshold |, = 102 within 20 steps with numeri-
cal iterations of Eq. (24) (this result has not reported in any
original paper, but first published in the following tutorial
paper: Fujisakaet al., 1996). Relaxation times to an attrac-
tor of the complete chaos synchronization are found to de-
pend on theinitial condition in the phase spacein acomplex
and self-similar way, which issimilar to riddled basin struc-
ture with multiple attractors (Alexander et al., 1992; Ott et
al., 1994). However, it should be noted that the complete
chaos synchronization of our system has a single attractor.
For a unidirectionally coupled system consisting of the
driving system v and the response system v ®, complete
chaos synchronization is achieved by changing the coupling
strength. In Fig. 6, we plot relaxation times of initial points





