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Fig. 1. Definitions of variables in the fluid erosion.

Table 1. Parameters used in the simulation.

Parameter Value

c f 0.01

D f 0.005

k 1.2

α 0.8

β 0.7

h0 0.0001

�x 0.1

�y 0.1

�t 0.1

Nx 256

Ny 512

For the sake of simplicity, we do not consider the mixed
flow dynamics of water and sediment. Evolution of the
elevation z is expressed by

∂z

∂t
= −qs + D f ∇2z (6)

qs = k Qα Sβ (7)

where qs is the rate of eroded sediment; D f is the diffusion
coefficient; and k, α, and β are constants. Q and S denote
the discharge, i.e. the local flow rate of the fluid phase, and
the local slope gradient, respectively, such that

Q = h |u|/h0 (8)

S =
√

(∂z/∂x)2 + (∂z/∂y)2. (9)

The first term on the right-hand side of Eq. (6) is associated
with channel erosion, and the second term is associated
with diffusion. Eq. (7) is based on a detachment-limited
model (Howard, 1994). In a detachment-limited model qs

is propotional to Aα Sβ , where A denotes the drainage area.
However, because it is hard to calculate the drainage area
A in every numerical step, in our model the discharge Q
is used instead of A. Note that the relation between the
drainage area and the discharge is Q ∝ A (Leopold et al.,
1964). The exponents α, β, and the coefficient k are 0.8,
0.7, and 1.2, respectively, based on Howard (1994).

Fig. 2. Visualization of distributions of the water depth for the ini-
tial gradient S0 = 0.0001. The darker areas indicate deeper region.
(1) t = 100, (2) t = 1100, (3) t = 1800, and (4) t = 2300.

3. Numerical Calculation
We apply the CIP (cubic interpolated pseudoparticle)

method Ogata and Yabe, 2004) to the advection term in the
shallow water equations (2)–(4). We apply the ADI (alter-
nating direction implicit) method and the cyclic reduction
algorithm to the diffusion term in Eq. (6), the central dif-
ference in space, and the forward difference in time. The
grid sizes in the x and y directions are �x and �y, and the
number of grid points is given by Nx × Ny .




