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Fig. 1. (a) Five stationary solutions for Du = 1.0, Dc = 50.0, β = 10.0, k2 = 50.0, and λ = 40.0. The explanations of SP, CY, PL, P and LM are
provided in the text. (b) Schematically showing the obtained patterns SP, CY, PL, P and LM.

Fig. 2. Time evolution of P-surface for u0 = 0.45 and L = δx N with δx = 0.70 and N = 32. The other parameters are same as in Fig. 1. In order to
make the initial randomness visible, the domain in (a) represents the isosurface of u = 0.45060, whereas those in (b)–(d) represent the isosurfaces of
u = 0.45.

to discretize the spatial derivatives was also applied.
We start with the uniform solution (u, c) = (u0, λu0/k2)

in an unstable condition with a small superimposed random
perturbation. As the global existence of solution in Eqs. (1)
and (2) was shown analytically (Hillen and Painter, 2001),
the distributions continuously evolve without blow up of
distributions, leading to the gradual aggregation of cell den-
sity of u.

The asymptotic stationary solutions obtained numerically
are summarized in Fig. 1, where a lot of random initial
conditions and δx were given for a given value of u0. It
should be noted that this set of simulations is very system-
atic and detailed. For example, we performed simulations
for u0 = 0.30 starting from 5 different random initial con-
ditions and for 200 = 5 × 40 values of L = δx N . This
implies that there are independent runs for only one value
of u0.

It is found that three or four different patterns are ob-
tained for in Fig. 1(a). The abbreviations LM, CY, and SP
mean lamellar, cylinder, and sphere, respectively. The re-
maining P and PL are explained below.

The formation of P for u0 = 0.45 is displayed in Fig.
2. Figures 3(a) and (b) shows the obtained patterns trans-
lated the mass of center of the patter to the center of cubic,
and viewed in different two directions. Figure 3(c) shows
the stationary profiles of u and c measured along the red
arrow shown in Figs. 3(a) and (b). It should be noted that

the distributions have sharp interfaces separating between
two domains. This pattern is composed of surfaces made
of six cylinders as shown in Figs. 2(d) and 3. This pattern
is called Schwarz’ primitive surface (P-surface), which was
first described by Hermann A. Schwarz (1890). The interest
in this surface in those days was due to the experimental ob-
servation that bi-layers of lipids or surfactants in water so-
lutions form at suitable thermodynamic conditions ordered
bi-continuous structures (Luzzati and Spegt, 1867). In the
case of u0 = 0.55, the distributions are upside down. The
P-surface is known as one of the minimal surfaces with the
average curvature equal to zero everywhere. This pattern is
a new one found in the full 3D computation in nonequilib-
rium systems.

The asymptotic pattern PL for u0 = 0.35 is shown in
Fig. 4. This pattern is composed of surfaces intersected
with four cylinders. When PL connected periodically, the
patterns are composed by the lamellar with holes. There-
fore, we called PL as perforated lamellae. The inside of
perforated lamellae has high density, whereas the remain-
ing space has low density. In the case of u0 = 0.65, the
distributions are upside down.

3. Stability Analysis of Obtained Patterns
As mentioned above, some patterns can be obtained for

same u0. One of the basic problems is to determine the
most stable structure. However, this is highly nontrivial be-


