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Fig. 3. (a), (b) Isosurface of P surface obtained by Eqs. (1) and (2) for u0 = 0.45 from different view directions. (c) Spatial variations of concentrations
u (solid line) and c (dotted line) along the red arrow in (a) and (b).

Fig. 4. Time evolution of perforated lamellae for u0 = 0.35, and L = δx N with δx = 0.63 and N = 0.32. The other parameters are same as in Fig.
1. In order to make the initial randomness visible, the domains in (a) represent the isosurface of u = 0.35075, whereas those in (b)–(d) represent the
isosurface of u = 0.35.

cause Eqs. (1) and (2) are nonvariational with no Lyapunov
functional. Here, we employ two methods to examine the
stability as follows.

One of the methods is to derive approximately a Lya-
punov functional for Eqs. (1) and (2) (Chavanis, 2003). In
the limit Dc → +∞, one may set ∂c/∂t = 0 in Eq. (2), so
that Eq. (1) can be viewed as a nonlinear mean-field Fokker-
Planck equation associated with a Langevin dynamics of the
form

d�r
dt

= (1 − u)∇c +
√

2Du �R(t), (3)

where �R(t) is white noise. Equation (3) describes a point
organism �r performing a random walk biased in the direc-
tion of a drift velocity proportional to the local density of u
and to the local gradient of c. In this situation, the physical
temperature T = β Du defined by the Einstein relation is
fixed instead of the energy since Du ∝ T (Chavanis, 2003).

Here, we can consider the Helmholz free energy as a
Lyapunov functional,

F = −1

2

∫
ucd�r + T

∫
{u ln u + (1 − u) ln(1 − u)} d�r ,

(4)

where the first term represents the self-interaction and the
second term expresses the entropy. Chavanis (2003) used

the entropy of Felmi-Dirac type, because the density always
remains bounded by parabolic terms in Eq. (1) as shown
in Fig. 3(c). In Chavanis (2003), it was shown Ḟ ≤ 0,
which is similar to the proper version of the H-theorem of
the canonical ensemble.

We evaluate the Helmholz free energy of SP, CY, PL, P,
LM and uniform distributions by substituting the asymp-
totic values of u and c directly into Eq. (4). These asymp-
totic values were prepared as follows.

For each parameter u0 and λ, the distribution of u is es-
timated as u(�r) = 1/(1 + eB�r+A) corresponding to Ḟ = 0
(Chavanis, 2003). For example, in the case of the SP, nu-
merical calculations are started from the distributions such
as

u(�r) = 1

1 + exp
[

B
√

(x − x0)
2 + (y − y0)

2 + (z − z0)
2
] ,

(5)

where (x0, y0, z0) is its center. B is the slope of the interface
between cell and non-cell areas. The distribution of c(�r)

can be expressed numerically by the solution of Helmholz
equation using Bessel functions. Carrying out the numerical
simulation, in which these distributions are employed as
initial conditions, for a sufficient long time such that the
distributions would no longer change, we can obtain the
equilibrium distributions. Introducing the each pattern (SP,


