

Fig. 1. Non-periodic L-tiling.

Fig. 2. Perturbation of edges of parallelogram.

Fig. 3. An edge.

Fig. 4. Examples of perturbed edges.

Fig. 5. An example of a product of perturbed edges.

turbed edge which is a little perturbed to avoid the restriction.

Next, we define a product of perturbed edges.

DEFINITION 2.4 (PRODUCT OF EDGES) Let

 a_1, a_2, \dots, a_k be perturbed edges. If they are placed on a straight line from right to left and form a row, then we call it a product of a_1, a_2, \dots, a_k and we denote this product by $a_1a_2 \cdots a_k$. See Fig. 5.

For a perturbed edge a, we define two operations \overline{a} , and a^{-1} . For a perturbed edge a, \overline{a} is a symmetry (right-side-left) image of a. In the same way, a^{-1} is an upside-down image of a. See Fig. 6.

It is easy to show the following lemma.

LEMMA 2.5 (1)
$$\overline{(a)} = a$$
, $(a^{-1})^{-1} = a$
(2) $\overline{ab} = \overline{ab}$, $(ab)^{-1} = b^{-1}a^{-1}$
(3) $\overline{(a^{-1})} = (\overline{a})^{-1}$

In a tiling, if a tile with a perturbed edge a and another tile with a perturbed edge b are neighbors at a and b, we

Fig. 6. Definition of \overline{a} , and a^{-1} .

Fig. 7. Edges of the parallelogram α .

Fig. 8. Matching of the tiling (P1).

have $a = \overline{b^{-1}}$. We denote this relation by $\frac{a}{b}$. We often say that *a* matches *b*.

The following lemma is trivial.

LEMMA 2.6 (1)
$$\frac{a}{b}$$
 if and only if $\frac{b}{a}$
(2) If $\frac{a}{b}$ and $\frac{a}{c}$ then $b = c$
(3) $\frac{ab}{cd}$ if and only if $\frac{a}{d}$ and $\frac{b}{c}$

Let \mathcal{T} be a tiling with respect to a protoset \mathcal{S} . Suppose that all prototiles are polygons. Here we assume that there is no vertex of a tile lying on an edge of another tile.

DEFINITION 2.7 (ESCHERIZATION, ESCHER DEGREE)

(1) Let T and S be as above. If we perturb edges of prototiles such that the perturbed prototiles give another tiling, we call this process escherization.

(2) If the set of escherization of T is parametrized by some perturbed edges, the escher degree is the number of the parameters.

Example. Let α be a parallelogram and (P1) a tiling of \mathbf{E}^2 as in Fig. 2. Let *a*, *b*, *c*, *d* be edges of α as in Fig. 7.

From the matching of the tiling, we have $\frac{a}{c}$ and $\frac{b}{d}$. That is, if we perturb *a*, then the edge *c* changes such that $c = \overline{a^{-1}}$, and we can perturb *b* independently of *a*. Then the edge *d* changes such that $d = \overline{b^{-1}}$. See Fig. 8.

We call relations obtained from the tiling property *edge-matchings*.