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Fig. A.1. Tiling of one prototile.

Fig. A.2. Tiling of two prototiles, no.5.

Fig. A.3. Tiling of two prototiles, no.8.

e(s−1) = i (s−1) = k(s−1) = o(s−1)

b(s−1) = d(s−1) = h(s−1) = n(s−1)
, then

a(s) = c(s) = g(s) = m(s)

f (s) = j (s) = l(s) = p(s)
,

e(s) = i (s) = k(s) = o(s)

b(s) = d(s) = h(s) = n(s)
.

Proof: For example, p(s−1) = l(s−1) and a(s−1) =
m(s−1) implies a(s) = p(s−1)a(s−1) = l(s−1)m(s−1) = c(s).
Other relations are shown in a similar way. From this
lemma, (s + 1)-spreads α(s+1), β(s+1) exist for any s.

(3), (4), and (5) are shown in a similar way as (2).

REMARK 5.5 In Appendix, we show figures of these tilings.
In (0, 2), (0, 8) tilings, β(s) contains only one tile β. This
means that these tilings are equivalent to a tiling of α as
tilings.
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Fig. A.4. Tiling of two prototiles (5,10).

Fig. A.5. Tiling of two prototiles (0,2).

Fig. A.6. Tiling of two prototiles (0,8).

Fig. A.7. Tiling of two prototiles (0,10).

Appendix A.
From Figs. A.1 to A.7 are pictures of tilings appearing in

Theorems A, B, and C.

Appendix B.
For a protoset S, if any tiling by S has no periodicity


