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Fig. 1. Convex pentagonal tiles of 14 types. The pale gray pentagons in each tiling indicate the fundamental region (the unit that can generate a periodic

tiling by translation only).

THEOREM 4 Let T be an edge-to-edge tiling by a convex
pentagonal tile. If T has only 3-valent nodes of size 3 and
4-valent nodes, then the convex pentagonal tile belongs to
one (or more) of type 1, type 2, or type 4.

The purpose of this paper is to introduce a plan to an-
swer the following. Among the convex pentagons that can
generate an edge-to-edge tilings, is there any one that does
not belong to the known 14 types? Let us roughly explain
our plan and procedure. Let G = ABC DE be a candidate

of convex pentagonal tile that can generate an edge-to-edge
tiling. Then, by Bagina’s Proposition, it has at least three
vertices that will become 3-valent nodes in the tiling. We
choose two of them, and consider conditions on angles, and
edge lengths. By these conditions, we can produce 465 pat-
terns of pentagons. Examine these pentagons one by one,
and classify them into (i) geometrically impossible cases,
(ii) the cases that cannot generate an edge-to-edge tiling,
(iii) known types, and (iv) remainders. If there is no re-
mainder, then the list of known types will be a perfect list,



