Table 1. Density of stations required to achieve  $p(u; t) \ge \alpha$ .

|     | t |      | 1.2  |      |      | 1.4  |      |      | 1.6  |      |
|-----|---|------|------|------|------|------|------|------|------|------|
| α   | и | 1.3  | 1.4  | 1.5  | 1.5  | 1.6  | 1.7  | 1.7  | 1.8  | 1.9  |
| 0.2 |   | 0.61 | 0.43 | 0.35 | 0.73 | 0.53 | 0.45 | 1.05 | 0.79 | 0.71 |
| 0.4 |   | 1.39 | 0.97 | 0.80 | 1.68 | 1.21 | 1.02 | 2.40 | 1.82 | 1.62 |
| 0.6 |   | 2.49 | 1.75 | 1.43 | 3.02 | 2.18 | 1.84 | 4.31 | 3.26 | 2.90 |
| 0.8 |   | 4.38 | 3.07 | 2.51 | 5.30 | 3.83 | 3.23 | 7.57 | 5.72 | 5.09 |



Fig. 4. Calculation of the probability: (a)  $t \le u \le 2r - t$ ; (b)  $2r - t < u \le 3r/2$ .

full tank of fuel. If  $t \le r$ , the vehicle can reach *D* without refueling and return to *O*. If t > 2r, the vehicle cannot reach *D* because more than one refueling is needed. Hence, we focus on the case where  $r < t \le 2r$ . If  $r < t \le 2r$ , the vehicle can make the round trip if both *O* and *D* are within the distance *r* of a station (Miyagawa, 2013a). In fact, the vehicle can reach the station, fill up at the station, go to *D*, fill up again at *D*, turn round, fill up again at that same station, and return to *O*.

To refuel at a station and complete the round trip, the station must be in the intersection of the two circles centered at O and D with radius r. To visit the station within a deviation distance u, the station must also be in the ellipse (1). Thus, p(u; t) is the probability that the intersection of the two circles and the ellipse contains at least one station, as shown in Fig. 2. The probability that a region of area S contains exactly x stations, denoted by P(x, S), is given by the Poisson distribution as

$$P(x, S) = \frac{(\rho S)^x}{x!} \exp(-\rho S), \qquad (2)$$

where  $\rho$  is the density of stations (Clark and Evans, 1954). The area of the intersection is, if  $t \le u \le 2r$ ,

$$S = \frac{2\sqrt{u^2 - t^2}}{u} \int_0^\alpha \sqrt{u^2 - 4x^2} \, \mathrm{d}x + 4$$
$$\cdot \int_\alpha^{r - t/2} \sqrt{r^2 - \left(x + \frac{t}{2}\right)^2} \, \mathrm{d}x, \qquad (3)$$

where

$$\alpha = \frac{2ru - u^2}{2t}.$$
 (4)



Fig. 5. Probability of making the round trip within a deviation distance *u*.

The probability p(u; t) is obtained as

$$p(u; t) = 1 - P(0, S) = 1 - \exp(-\rho S).$$
 (5)

Although the final form is not provided due to the limited space, the probability can be expressed in a closed form. The probability p(u; t) is shown in Fig. 3. It can be seen that p(u; t) increases with the deviation distance u and the density of stations  $\rho$ . Note that p(t; t) = 0 because the vehicle cannot make a deviation and that p(2r; t) is identical with the result obtained by Miyagawa (2013a).

Using the probability p(u; t), we can calculate the density of stations required to achieve a specified level of service. Table 1 shows the density of stations required to achieve  $p(u; t) \ge \alpha$  for the vehicle range r = 1. The required density increases with the trip length t and the target probability  $\alpha$ , and decreases with the deviation distance u that drivers can tolerate. The target service level should be