M. Miyagawa

	t		0.7			0.9			1.1	
α	и	0.8	0.9	1.0	1.0	1.1	1.2	1.2	1.3	1.4
0.2		1.28	0.83	0.63	1.20	0.79	0.63	1.41	1.03	0.90
0.4		2.93	1.90	1.44	2.75	1.81	1.44	3.22	2.37	2.07
0.6		5.26	3.41	2.59	4.93	3.25	2.58	5.77	4.25	3.71
0.8		9.24	5.99	4.54	8.66	5.70	4.53	10.14	7.46	6.52

Table 2. Density of stations required to achieve $p(u; t) \ge \alpha$.

Fig. 6. Calculation of the probability: (a) $t \le u \le r - t$; (b) $r - t < u \le r$.

determined according to the traffic condition in the study region. If long distance trips are dominant, we should use a large value for both t and α . If drivers are reluctant to make a deviation to refuel their vehicles, the value for u should not be much greater than that for t.

4. Fuel is Available at Either Origin or Destination

Next, we assume that fuel is available at either origin O or destination D. Without loss of generality, we assume that fuel is available at only O. Since the round trip is considered, the vehicle is required to reach D with at least half a tank remaining. If $t \le r/2$, the vehicle can make the round trip without refueling. If t > 3r/2, the vehicle cannot make the round trip without refueling more than once. Hence, we focus on the case where $r/2 < t \le 3r/2$. If $r/2 < t \le 3r/2$, the vehicle can make the round trip if O is within the distance r of a station and D is within the distance r/2 of the station (Miyagawa, 2013a). In fact, the vehicle can reach the station, fill up at the station, and return to O.

To refuel at a station and complete the round trip, the station must be in the intersection of the circle centered at O with radius r and the circle centered at D with radius r/2. To visit the station within a deviation distance u, the station must also be in the ellipse (1). Thus, p(u; t) is the probability that the intersection of the two circles and the ellipse contains at least one station, as shown in Fig. 4. The area of the intersection is, if $t \le u \le 2r - t$,

$$S = \frac{\sqrt{u^2 - t^2}}{u} \int_{\alpha}^{u/2} \sqrt{u^2 - 4x^2} \, \mathrm{d}x + 2$$
$$\cdot \int_{t/2 - r/2}^{\alpha} \sqrt{\left(\frac{r}{2}\right)^2 - \left(x - \frac{t}{2}\right)^2} \, \mathrm{d}x, \tag{6}$$

Fig. 7. Probability of making the round trip within a deviation distance u.

and if $2r - t < u \le 3r/2$,

0

$$S = \frac{\sqrt{u^2 - t^2}}{u} \int_{\alpha}^{\beta} \sqrt{u^2 - 4x^2} \, \mathrm{d}x + 2 \int_{t/2 - r/2}^{\alpha} \sqrt{\left(\frac{r}{2}\right)^2 - \left(x - \frac{t}{2}\right)^2} \, \mathrm{d}x + 2 \int_{\beta}^{r - t/2} \sqrt{r^2 - \left(x + \frac{t}{2}\right)^2} \, \mathrm{d}x,$$
(7)

where

$$a = \frac{u^2 - ru}{2t}, \ \beta = \frac{2ru - u^2}{2t}.$$
 (8)

The probability p(u; t) is obtained from Eq. (5) and shown in Fig. 5. Note that p(3r/2; t) is identical with the result obtained by Miyagawa (2013a).

Table 2 shows the density of stations required to achieve $p(u; t) \ge \alpha$ for r = 1. Observe that more stations are required than the previous case to achieve an even lower level of service.