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[Proof]
We shall show the truth by use of the Binet’s formula.

φn + Fn−2

φ2

= φn−2 + φ−2 1√
5
{φn−2 − (−1)n−2φ2−n}

= 1√
5
{
√

5φn−2 + φn−4 − (−1)n−2φ−n}

= 1√
5
{(φ2 − φ−2)φn−2 + φn−4 − (−1)nφ−n}

(∵ φ2 − φ−2 =
√

5)

= 1√
5
{φn − φn−4 + φn−4 − (−1)nφ−n}

= 1√
5
{φn − (−1)nφ−n}

= Fn. [Q.E.D.]

Theorem I: the generalised golden right triangle
We generalise the golden right triangle of (the short leg, the
long leg, the hypotenuse) by

(
√

Fn−2, φ
n/2,

√
Fnφ) for ∀n ≥ 1,

as shown in Fig. 2. Then the known φ-related right trian-
gles, i.e., the Kepler triangle and its kin, are all covered by
the formula above.

In case n = 1, the Kepler triangle, the golden right
triangle, is defined by the set of (1, φ1/2, φ).

In case n = 3, the silver right triangle is defined by the
set of (1, φ3/2, 21/2φ).

In case n = 4, Olsen’s square-root-three φ right triangle
(Olsen, 2002) is defined by the set of (1, φ2, 31/2φ).

We should note that, in case n = 2, the triangle is degen-
erated to the segment of the set (0, φ, φ).

We may call the ultimate golden right triangle, as n tends
to infinity. Although the set itself is divergent, we can de-
termine the ratios amongst the sides. By use of the Binet’s
formula, we retain the leading terms of the sides such that

(
√

Fn−2, φ
n/2,

√
Fnφ) → (5− 1

4 φ
n−2

2 , φ
n
2 , 5− 1

4 φ
n
2 φ)

= (φ−1, 51/4, φ)5−1/4φn/2,

as n → ∞. The set of values in the parentheses above last
satisfies the Pythagorean theorem, because

φ2 =
√

5 + φ−2.

[Proof]
Due to Eq. (1) of Lemma I, the generalised golden right

triangle satisfies the Pythagorean theorem:

Fnφ
2 = φn + Fn−2. (2)

We confirm the uniqueness of the generalisation about
the combination between integers and the golden ratio. Sup-
pose the integer sequences an and bn , completely different

Fig. 2. The generalised golden right triangle (a generic image).

from the Fibonacci sequence, exist for the generalisation,
then these must satisfy the relation such that

anφ
2 = φn + bn. (3)

Taking difference between Eqs. (2) and (3), we obtain the
result below.

(Fn − an)φ
2 = Fn−2 − bn.

The left-hand side of the equation above is irrational,
whilst the right-hand side is integral. Therefore, the
equation above holds true, if and only if Fn − an = 0 and
Fn−2 − bn = 0. That is, an = Fn and bn = Fn−2. Hence the
generalisation is unique.

[Q.E.D.]

3. Conclusion
It is our major success to generalise the definition of the

Kepler triangle and its kin by use of the recursion formula
of φ and the Fibonacci numbers:

(the short leg, the long leg, the hypotenuse)

= (
√

Fn−2, φ
n/2,

√
Fnφ) for ∀n ≥ 1.

This formalism covers all the known φ-related right trian-
gles, i.e., the Kepler triangle and its kin. In case n = 2, the
triangle is degenerated to the segment of the length φ. As n
tends to infinity, the ultimate golden right triangle is found
to have the ratios of the sides:

(the short leg, the long leg, the hypotenuse) → (φ−1, 51/4, φ).

Our definition becomes a nice classroom model to explore
the relation amongst the golden ratio, the Fibonacci num-
bers and the Pythagorean theorem.
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