The Metallic Right-Triangles 35

(©
(b)
(2)
V3d1/2(3) (3)
V291/2(2) ®(2)
B1/2 D
1 1 1

Fig. 2. Examples of the initial three metallic right-triangles: (a) the

golden right-triangle (the Kepler triangle); (b) the silver or platinum
right-triangle; (c) the bronze right-triangle. The metallic ratios are given
in Definition I in the text.

the ratio amongst the sides converges such that
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as n tends to infinity. The ratio satisfies the Pythagorean
Theorem.
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because of (5).

3. Examples

Figure 2 shows the initial three of the metallic right-
triangles. Figure 2(a) is the golden right-triangle or the
Kepler triangle. Figure 2(b) is my silver right-triangle. But
this name is used to other triangle, so I may call it the
platinum right-triangle. Figure 2(c) is the bronze right-
triangle. These metallic ratios are given in Definition 1
above.

How many examples may we find embedded in the nature
and artefacts?

4. Conclusion

What we get is the super-set of the Kepler triangle and
its kin (Sugimoto, 2020). Those new triangles act as the
trivium (three-way crossing) amongst the metallic means,
the generalised Fibonacci sequences and the Pythagorean
theorem.
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