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Abstract.  A set of N-dimensional product-regular polytopes (N-dimensional PRP-set)
can be produced from a regular polytope by taking the product space of N solid models
which are derived from the boundary figures (vertices, edges, faces, and so on) of the
regular polytope.

I found a method to calculate all vertices of the N(≥2)-dimensional PRP-set derived
from an N-dimensional regular polytope.

The PRP-set derived from a regular polytope is similar to the set of semi-regular
polytopes derived from the regular polytope in point of that both include simple semi-
regular polytopes which have the same rotational symmetry with the regular polytope. But
the PRP-set differs from the set of semi-regular polytopes because that the PRP-set
includes the regular polytope itself, and it doesn’t include the snub-type semi-regular
polytopes, regular prisms, nor regular anti-prisms, all of which have no same rational
symmetry with regular polytopes.

In this paper, I calculated and displayed only 2 to 6-dimensional PRP-sets by using
computer.

1.  Definitions and Main Result

This paper shows how to calculate vertices of a set of N-dimensional product-regular
polytopes (N-dimensional PRP-set) derived from an N-dimensional regular polytope.

Definition 1  An N-dimensional polytope is defined recursively as follows;

 

0
1
2
3

( 1) 4

a point if  N ,
a segment if  N ,
a polygon if  N ,
a polyhedron if  N ,
an N - dimensional polyhedron which is constructed of
N - dimensional boundaries if  N .

=
=
=
=

− ≥

















222 M. ISHII

Definition 2  An N-dimensional product-regular polytope (say PRP) derived from an N-
dimensional regular polytope � is defined as follows:

(a) The normal of each (N – 1)-space is parallel to some of the vectors which span
from the center of � to vertices or centers of the boundaries of �.

(b) The length of every edge is constant.
(c) The condition around every vertex is regular.

The set consisting of all PRPs derived from � is called N-dimensional PRP-set.

Definition 3  An N-dimensional simple semi-regular polytope is defined as follows:
(a) It has the same rotational symmetry with any of N-dimensional regular polytopes.
(b) It is not an N-dimensional regular polytope.

Theorem  Each vertex ν of every PRP can be calculated by

 ν = TT′ν0    , (1.1)

where T ∈  �� (see Subsection 2.1), T′  is the matrix derived from T (see Subsection 2.2) and
ν0 ∈  �0 (see Subsection 2.3).
Furthermore for each ν0

{ν = TT′ν0 | T ∈ ��} (1.2)

is the set of all vertices of one PRP.

2.  Complements

2.1.  The set of matrices ��

The set of N × N matrices �� is defined as:

�� = {T | T = (a0  a1  ···  an  an + 1  ···  aN – 1),
(a0) ⊂  (a1) ⊂  ··· ⊂  (an) ⊂  (an + 1) ⊂  ··· ⊂  (aN – 1)}, (2.1)

where an is a vector from the center of � to the center of each n-dimensional component
polytope (say (an)), provided that each n-dimensional polytope (an) belongs to an (n + 1)-
dimensional polytope (an + 1).

Each T is equivalent to a symmetrical region of � on an N-dimensional sphere, and
the number of the elements in ��(say L�) equals to the number of symmetrical regions of
�. The number of vertices is not more than L�, because some vertices coincide. The
number of vertices is exactly L� when

ν0 = (1, 1, ... , 1). (2.2)

2.2.  Diagonal matrix T′
A diagonal matrix T′  is calculated from a given T as:
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where Ti j,  is the cofactor of (i,j)-th entry of T.

2.3.  The set of vectors �0
Let

�0 = {ν0 = (ν0,1, ν0,2, ... , ν0,N) | ν0 ≠ (0, 0, ... , 0),
ν0,i = 0 or 1  for  i = 1, 2, ... , N}. (2.5)

Then, the number of all PRPs derived from � is

#�0 = 2N – 1. (2.6)

If an � is self-dual, then two PRPs which are derived from a ν0 and from the reverse ordered
vector are congruent each other.

3.  An Example in 3-Space

3.1.  Symmetrical regions
Let a regular octahedron be �1. The edge-contact polytope is a rhombic dodecahedron

�2, and the point-contact, i.e. the dual, is a cube �3. By projecting the edges of these three
polytopes from the center onto the circumsphere of �1, the lines of symmetry is derived as
in Fig. 1 (COXETER, 1973). All of the intersected points of the lines become all vertices,
mid-points of edges, and centers of faces of �1. These lines, i.e. great circles, divide a
sphere into 48 spherical triangles. In other words, the discs each of whose boundaries are
the great circles divide the planes which include the origin divede the inner space of the
sphere the 3-space into 48 regions.

Generally, an N-dimensional regular polytope � can be written as:

� = {{k1, k2, ... , kN}}, (3.1)

where kN is the number of (N – 1)-dimensional polytopes {{k1, k2, ... , kN–1}} which compose
� on its boundaries. Then, the (N – 1)-spaces of symmetry divide the N-space into L�

symmetrical regions;
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L� = k1 × k2 × ··· × kN
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There is a one-to-one correspondence between these regions and the matrices in �� (refer
to Subsection 2.1).

3.2.  Setting of a point in a spherical triangle
Put a point P inside a spherical triangle ABC. The centers of �1, �2, and �3 are fixed

at the origin O. They can not be rotated nor moved, but can be similarly extended or
contracted. If the surfaces of these three polytopes include P which is not on an edge, then
the product space of them makes a 26-hedron as in Fig. 2. This 26-hedron is produced by
symmetrical reflections, and it constructs a semi-regular octagon (each angle is constant,
but there are two kinds of edges) around A according to the property of symmetry.
Similarly, it constructs a rectangle around B, and a semi-regular hexagon around C. The
shapes around A, B and C are;

where,  means an arc AB, for example.

3.3.  The conditions on the position of P to construct a PRP
In Fig. 2, if the length of every edge is constant, the shape is a PRP which is equivalent

to a semi-regular polytope or a regular polytope. The conditions for having the shapes of
PRPs are;

PQ PR PS≠ = =0 0 3 6,   , ( . )

PR PQ PS≠ = =0 0 3 7,   , ( . )

PS PQ PR≠ = =0 0 3 8,   , ( . )

PQ PR PS= ≠( ) =0 0 3 9,   , ( . )
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PQ PS PR= ≠( ) =0 0 3 10,   , ( . )

PR PS PQ= ≠( ) =0 0 3 11,   , ( . )

PQ PR PS= = ≠( )0 3 12, ( . )

where, PQ , for example, is the distance from P to Q.

3.4.  Vertex ν
In Fig. 2, let a, b, and c be;

a = OA, ( . )3 13

b = OB, ( . )3 14

c = OC, ( . )3 15

and T and ν0 be;

T = (a  b  c), (3.16)

ν0 = (α, β, γ), (3.17)

then,
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3.5.  Distance from a point to a plane
The next equation is equivalent to Eq. (3.6) as is shown in Fig. 3;

P-OAB = P-OBC = P-OCA, (3.22)

where, P-OAB, for example, is the distance from P to a plane OAB.
In N-space, let an (N – 1)-space x be;

n · x = K, (3.23)
K: a constant.

The distance d from a point ν to an (N – 1)-space x is;

d
K= ⋅ +n

n
ν

. ( . )3 24

If an (N – 1)-space x includes the origin O, then K is 0.
In this case, planes OAB, OBC, and OCA are;

plane OAB: (a × b) · x = 0, (3.25)

plane OBC: (b × c) · x = 0, (3.26)

plane OCA: (c × a) · x = 0. (3.27)

Substitute Eqs. (3.21) and (3.25) into Eq. (3.24);

P - OAB =
×( ) ⋅ × + × + ×( )

×
a b b c a c a b a b c

a b

α β γ
( . )3 28

=
×( ) ⋅ ×( )

×
a b a b c

a b

γ
( . )3 29

 = ⋅ ×( )γ c a b , ( . )3 30

because (a × b) ⊥  a and (a × b) ⊥  b.
Similarly,

P-OBC = α a · (b × c), (3.31)

P-OCA = β b · (c × a), (3.32)
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and,

a · (b × c) = b · (c × a) = c · (a × b), (3.33)

therefore,

P-OBC = P-OCA ⇔ α = β, (3.34)

P-OCA = P-OAB ⇔ β = γ, (3.35)

P-OAB = P-OBC ⇔ γ = α. (3.36)

When (α , β, γ) = (1, 0, 0), (0, 1, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0,
1, 1), (1, 1, 1), each of them satisfies each of Eqs. (3.6)–(3.12), and it is equivalent to each
vector ν0 in Subsection 2.3.

3.6.  Vector product in N-space
The extension of 3-dimensional vector product to N-space is shown in IWAHORI (1982)

as follows;
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where e1, ... , eN are the fundamental orthonormal vectors in N-space. It needs (N – 1)
vectors to produce an N-dimensional vector product. In N-space, we can use Eq. (3.37) as
the normal of an (N – 1)-space which spans ν1, ν2, ... , and νN–1.

4.  Conclusion

In case of 2-space, all PRPs are regular 2-polytopes. In case of 3-space, all PRPs are
regular and simple semi-regular 3-polytopes. In case of 4-space, PRPs are regular and
simple semi-regular 4-polytopes.

The vertices of all N(≥5)-dimensional regular polytopes are already shown (MIYAZAKI

and ISHIHARA, 1989), and we can determine vertices of N(≥5)-dimensional PRP-set
according to Eq. (1.1). The 5-dimensional PRP-set derived from the regular (5 + 1)-tope
is shown in Fig. 4, the 5-dimensional PRP-set from the regular 25-tope and (2 × 5)-tope in
Figs. 5 and 6, the 6-dimensional PRP-set from the regular (6 + 1)-tope in Figs. 7 and 8, and
the 6-dimensional PRP-set from the regular 26-tope and (2 × 6)-tope in Figs. 9–12.
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In 2-space, all PRPs are regular polytopes. They include no semi-regular polytopes.
On the other hand, in N(≥3)-space, the PRP-set derived from a regular polytope includes
all of regular polytopes and simple semi-regular polytopes derived from the regular
polytope. The coordinates of all vertices of a PRP are easily derived from a regular polytope
according to Eq. (1.1). Therefore, all vertices of N(≥3)-dimensional simple semi-regular
polytopes can be calculated.

Fig. 1.  Symmetrical regions.

Fig. 2.  Vertices P, Q, R, and S of a 26-hedron. Fig. 3.  Distance from P to 3 planes OAB,
OBC, and OCA.
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Fig. 4.  The 5-dimensional PRP-set derived from a regular (5 + 1)-tope.
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Fig. 5.  The 5-dimensional PRP-set derived from a regular 25-tope (1/2).
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Fig. 6.  The 5-dimensional PRP-set derived from a regular 25-tope (2/2).
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Fig. 7.  The 6-dimensional PRP-set derived from a regular (6 + 1)-tope (1/2).



On a General Method to Calculate Vertices of N-Dimensional Product-Regular Polytopes 233

Fig. 8.  The 6-dimensional PRP-set derived from a regular (6 + 1)-tope (2/2).
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Fig. 9.  The 6-dimensional PRP-set derived from a regular 26-tope (1/4).
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Fig. 10.  The 6-dimensional PRP-set derived from a regular 26-tope (2/4).
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Fig. 11.  The 6-dimensional PRP-set derived from a regular 26-tope (3/4).
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Fig. 12.  The 6-dimensional PRP-set derived from a regular 26-tope (4/4).
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