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Abstract.  Geometrical and crystallo-chemical criteria for mapping real crystal structures
onto various surfaces such as cylinders, cones, saddles and polyhedra are presented. In
particular the requirements for retaining some of the original crystal symmetry elements
when constructing cones and polyhedra from crystals are given, using real structures
made of boron nitride, graphite, and aluminosilicates as illustration. This is used as the
basis for building several polyhedral shell models for the aluminosilicate mineral
allophane. Other possible shell structures are shown to exist provided some of the
mapping requirements are relaxed.

1. Introduction

Symmetry concepts enter virtually all fields of science in one way or another. In
crystallography, it is symmetry in the sense of repetition of a basic unit in (usually) three
dimensions that plays a central role. Whether this basic unit is constituted of a few atoms,
as in inorganic crystals, or of thousands of atoms, as in a crystallized protein, the principle
is the same: a macroscopic crystal can be constructed from a starting unit with as few as one
atom, and an appropriate set of symmetry operations, including translational operations.

However, crystals are not the only symmetrical structures that exist in the mineral
world. To name a few famous examples, quasicrystals (SHECHTMAN et al., 1984), fullerenes
(KROTO et al., 1985) and icosahedral packings (HUBERT et al., 1998) do not possess the
translational symmetry which defines crystals. Yet they are highly symmetrical, in that
their structure can be obtained from a limited number of rules (non-crystallographic
icosahedral symmetry operations for the cases of fullerenes and icosahedral packing, and
Penrose matching rules or overlapping rules of a quasi-uni-cell for quasicrystals
(STEINHARDT et al., 1998)).

Of particular interest are structures of the fullerene type, or more generally polyhedral
cages, because they are finite and of very small size (on the nanometric scale). In this sense
their morphology is not unlike that of many biological objects.

Fullerene-type structures were originally observed in the carbon system. Later,
polyhedral cages of other compositions were also found (TENNE et al., 1992; STÉPHAN et
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al., 1998; PARILLA et al., 1999). Despite their more complex crystal structure, even
aluminosilicates are known to form small hollow particles, called allophane (HENMI and
WADA, 1976). Recently, models involving the mapping of various aluminosilicate crystal
structures onto polyhedral cages such as icosahedra, octohedra, and tetrahedra, were
constructed for allophane, by analogy with other known fullerene-type objects (BOURGEOIS

and BURSILL in preparation; the octahedral model is also introduced in BURSILL and
BOURGEOIS (1999)). Moreover, the feasibility of mapping a complex structure like that of
an aluminosilicate onto polyhedra begs the more general question of the modalities of
crystal structure mapping onto various surfaces. The resulting objects are expected to form
a whole new class of ordered structures, some of which have already been found
experimentally.

The purpose of this paper is to show how some crystal structures can be mapped onto
various types of surfaces like cylinders, cones, saddles, and especially closed polyhedral
surfaces, provided that the initial crystal and the surface possess some amount of symmetry
compatibility. As will be illustrated with allophane, lack of crystallinity does not prevent
these structures from exhibiting a high degree of symmetry, and beauty, also.

2.  Objects onto which Crystals can be Mapped

Here we have chosen to investigate the structure of shells made of crystalline material,
and with curvatures in the nanometric size region. Our main interest lies in the mapping of
crystals onto polyhedral shells. However, the symmetry requirements for applying
successfully the mapping procedure can be illustrated in a clearer manner (it is hoped) by
first focusing on conical, tubular and saddle-shaped surfaces. These surfaces are open, and
if carefully chosen, demand relatively little change in the original crystal structure. After
considering the mapping onto polyhedra in order to generate closed cage structures (Sec.
4.4), the negatively curved equivalent, which can result in periodic, three-dimensional
frameworks, will be briefly discussed (Sec. 4.5).

3.  Suitable Crystal Structures

It is clear that the mapping of a crystal structure onto a surface will be very much
facilitated if the crystal in question is highly anisotropic, and more specifically, if it
consists of weakly interacting layers. Indeed it can be expected that in general, order
perpendicular to the surface will not be retained. There are numerous layered compounds
in Nature, and therefore this is not a very severe restriction.

Crystal structures based on the graphitic-type trigonal lattice such as in carbon and
boron nitride (BN) constitute the simplest examples of layered structures. Each layer is
monoatomically thin, and consists of planar trigonal bonds. Experimentally these carbon
or BN layers have been found in the form of nanotubes (IIJIMA, 1991), cones (HAN et al.,
2000; BOURGEOIS et al., 2000b), and polyhedral shells—the so-called fullerenes (KROTO

et al., 1985).
Other, more complicated layered structures, like sulphides, fluorides and chlorides are

also good candidates. Examples of nanotubes and polyhedral cages have already been
discovered in each of these systems (TENNE et al., 1992; ROSENFELD HACOHEN et al., 1998;
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PARILLA et al., 1999, respectively).
Structures as complex as silicates are known to exhibit similar behaviours to the

aforementioned compounds. The most drastic case of high curvature is shown by the
natural mineral imogolite, which consists of a single aluminosilicate layer rolled into a tube
2 nm in diameter (CRADWICK et al., 1972). Another interesting, if still mysterious example,
is given by allophane, a hollow cage a mere 4–5 nm in diameter (HENMI and WADA, 1976).
Larger silicate objects with cylindrical and conical geometries such as in the minerals
asbestos and halloysite have also been known to exist for some time (YADA, 1967).

The above clearly shows that certain crystalline materials can readily display curved
and polyhedral shapes. It is therefore of interest to understand the underlying symmetry
compatibilities between the original crystal and the polyhedral, tubular... etc product.

4.  Symmetry Requirements for Successful Mapping

4.1.  Tubes
Tubes are remarkable in that they can be produced from a flat lattice without the

breaking of a single bond. In other words any layer can be mapped onto a cylinder, provided
the strain associated with the tube’s curvature is not excessive. This is called conformal
invariance, and is illustrated in Fig. 1 for a boron nitride sheet (a) and an aluminosilicate
layer as in imogolite (b).

4.2.  Cones
The property of conformal invariance characteristic of tubes does not apply to cones.

A flat sheet can be made into a cone if a sector is removed from it, and the two cut edges
are joined. The angle of the sector, Dθ, is restricted to special values which are directly
related to the symmetry of the lattice (see Fig. 2). For a hexagonal lattice such as in graphitic

Fig. 1.  (a) A boron nitride nanotube. Apart from some bond bending arising from the high curvature of the tube,
the original BN lattice has been preserved. (b) The complex aluminosilicate lattice based on the mineral
gibbsite can also be mapped onto a highly curved cylinder, as found in imogolite tubes.
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carbon, Dθ must be a multiple of 60°. For BN, the set of allowed values decreases to
multiples of 120° (see Fig. 3). If these conditions on Dθ are met, the lattice will have been
preserved everywhere except at the apex of the cone, consisting of a topological defect: a
two-membered ring in Fig. 3(a). The requirement on Dθ mentioned earlier is then
equivalent to a restriction on apical ring-defects, and also on cone apex angles. For BN the
defects must be even-membered (i.e. a square for example, or a two-membered ring as in
Fig. 3(a)), or a line defect will occur (Fig. 3(b)). BN cones synthesized in the laboratory
were indeed observed to obey these conditions (BOURGEOIS et al., 2000a, b).

Conical sheets are important because they arise from a single topological defect, and
therefore they illustrate in a simple way the importance of symmetry compatibility between
the original crystal structure and the surface it is mapped onto.

4.3.  Saddles
Saddle-shaped surfaces are the negatively-curved equivalent of cones. They can be

obtained from a flat sheet by a very similar procedure to that outlined in Sec. 4.2. Instead
of removing a sector from the flat lattice, a sector is added. This causes the sheet to buckle
in opposite directions and hence to become saddle-shaped. As for cones, the lattice is
modified only at the “apex” or saddle point, with the presence of a ring defect. For a
hexagonal lattice this defect is a ring with more bonds than a hexagon. Again, restrictions
on the size of the ring apply, and they are in fact identical to the previous (cone) case. Figure
4 shows such an object for carbon. The sole defect is a seven-membered ring.

4.4.  Polyhedra
In a topological sense, polyhedra are much more complicated than either cones or

saddles. If one again considers the trigonal lattice of graphitic structures, it can be deduced
from Euler’s theorem that twelve pentagonal rings, or six squares (or four triangles... etc)
must be present if the sheet is to close onto itself. A closed shell with twelve pentagons
located equidistantly will exhibit icosahedral morphology, whereas six squares will be

Fig. 2.  Formation of a cone from a flat sheet: a sector of angle Dθ is removed and the two edges of the cut are
joined together. Dθ must take on special values which reflect the symmetry of the lattice of the flat sheet.



The Symmetry of Polyhedral Cages Made from Crystals 299

Fig. 3.  Two boron nitride seamless cones. In (a) the particle resulted from the introduction of an even (two)-
membered ring, and the local symmetry of the BN lattice has been preserved everywhere except at the apex
of the cone. On the other hand, the particle shown in (b) has an odd (one)-membered ring, which is
responsible for a defect line of B-B or N-N bonds (see arrow).

Fig. 4.  A saddle-shaped surface for carbon. Hexagonal symmetry has been retained everywhere except at the
saddle point, where a topological defect, a heptagon, is located.
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associated with the shape of an octahedron, and four triangles with that of a tetrahedron.
Just as in the case of cones and saddles, symmetry conditions have the effect that BN should
prefer the octagonal morphology (see Fig. 5(a)), whereas carbon can display any of the
possible polyhedral shapes. However, the lesser strain associated with the icosahedron will
make it the most favoured form. And it is indeed what is observed with Buckminsterfullerene,
or C60 (Fig. 5(b)).

Only a few simple examples have been given so far, but a similar study can be carried
out for any type of layered compound. In fact, PAWLEY (1962) investigated systematically
all possible mappings of layers onto the main polyhedron types. The symmetry of the flat
lattices was considered to be adequately described by one of the seventeen crystallographic
plane groups. 44 possibilities were found, for a restricted number of polyhedra types. Of
these 44, the above-mentioned octahedral cage was the most commonly encountered
object.

On the basis of such study, the aluminosilicate mineral gibbsite (see Fig. 6(a)), which
is the backbone of imogolite tubes, and also perhaps of allophane hollow shells, can be
expected to map onto octahedra only. This is due to the presence of oxygen octahedra. Such
a model is depicted in Fig. 6(b), near its four-fold rotation axis. The diameter of the cage
is about 4 nm, which is close to the size of allophane particles. It was discovered that a
pseudo-icosahedral mapping was also possible, by using the point group m3m (instead of
m35  for the icosahedral point group). The resulting cage structure is shown in Fig. 6(c).
Despite the loss of the five-fold symmetry axes, symmetry incompatibility is evident from
the strained connections at the edges of the triangular facets (see arrows). However, the
octahedral structure still appears to be the most reasonable model on the basis of the highest
resolution transmission electron microscopy image available for allophane (see figure 1 in
WADA et al. (1988)) (BOURGEOIS and BURSILL in preparation). Nevertheless, the exploitation
of the different symmetry elements of a polyhedron, as illustrated by the pseudo-icosahedron
model, may lead to additional mapping possibilities, which seem worth exploring both
theoretically and experimentally.

Fig. 5.  (a) An octahedral shell of BN, with a square at each of its six vertices. (b) C60 with its characteristic twelve
pentagonal rings and icosahedral symmetry.
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4.5.  Periodic, negatively curved surfaces
The first proposed model for negatively curved surfaces made from crystals is due to

MACKAY and TERRONES (1991), for carbon. It consists of a monolayer of graphite with
strategically placed heptagons, thus forcing the sheet to buckle into an infinite three-
dimensional framework. A similar idea was used by HYDE (1993) for alumino-silicates to
build periodic frameworks of negative curvature. It was even suggested that allophane
might represent such a structure. However the fairly stringent symmetry requirements
mentioned in the present paper were not taken into account.

5.  Conclusion

The requirements for mapping crystal structures onto various types or surfaces, and
in particular closed, polyhedral shells, were investigated. Despite the need for symmetry
compatibility between the starting crystal structure and the surface, a number of such novel
ordered structures can already be synthesized, and many more can be expected to be
produced in the future.

Fig. 6.  (a) A gibbsite layer, the basis of the imogolite and possibly the allophane structures. (b) Octahedral model
for allophane. (c) Pseudo-icosahedral model; two edges between triangular sheets are indicated by arrows.
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