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Abstract.  A computer model of the fungal colony that grew consuming limited amount
of nutrient with three control parameters, growth rate, and nutrient level and diffusion,
was constructed to make a basic morphology diagram of mycelial colony. To apply the
diagram with those parameters to the mycelial growth of Aspergillus nidulans wild and
mutant strains, the relation between the colony expansion and the nutrient level was
measured. Differences in the colony patterns of these strains at low nutrient level were
attributed to the change in the above relation that caused a shift of the corresponding
patterns in the diagram.

1.  Introduction

The shapes of fungal colonies exhibit striking diversity depending on the substrate
conditions as well as on the fungal species. Although the shapes and the surface textures
of colonies provide useful information to determine the species or to monitor the state of
growth, colony patterning looks to be highly sensitive to the environmental factors.
However, there might be underlying basic rules of pattern selection common for any
species.

Obviously, the nutrient level in the substrate is the main factor for the hyphal
production. In addition, nutrient diffusion will be a significant factor, since it affects the
nutrient flux into the colonized area and the distribution of the location in which uptake of
nutrient occurs intensely. As for the internal parameter of mycelium, the growth rate of
hyphae, or the rate of nutrient utilization, will largely contribute to determine where in the
colony the hyphal production occurs. In this letter, these three control parameters are
considered independent with each other, in order to make general morphology diagram of
the mycelial colonies by using a model.

This letter explores the colony morphology of wild and mutant strains of Aspergillus
nidulans based on a morphology diagram that was made by a colony model. To apply the
morphology diagram to the real colony patterns, the manner of colony expansion was
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examined for A. nidulans. It is suggested that the relationship between the nutrient level in
the substrate and the growth rate of the mycelium is important to relate the real patterns with
the morphology diagram.

2.  Materials and Methods

The strains used in this study were A. nidulans wild type strain A4 (the index of strain
in FGSC) and a mutant strain A583 supplied by the Fungal Genetic Stock Center (FGSC),
Kansas City, USA. Spores of the strains were adsorbed to the silica particles for storage
(TABOR and TABOR, 1970). The peptone agar media containing K2HPO4 (0.05%), KH2PO4

(0.05%), with Difco Neopeptone 0.01, 0.05, 0.1, 0.5, and 1%, and with Difco Bacto-agar
0.5% were prepared, and 20 ml of sterile medium was poured into 9-cm Petri plates. Silica
particles containing spores were directly put on the medium for inoculation, and the strains
were cultivated at 24°C. The plates were placed in closed vinyl bags to reduce drying of the
media. The colonies were photographed with a 35 mm camera with oblique illumination
from below.

3.  Model

The colony patterns were developed on a 2-dimensional square lattice of 100 × 200
lattice constant. Each lattice point is supplied with Ni nutrient particles initially for
storage. Each hyphal unit can occupy one lattice point. Seed hyphae are placed initially
in a line of 100 lattice constants. A hyphal unit is chosen at random, and if the nutrient
storage remains in the lattice point that the hyphal unit occupies, it absorbs one nutrient
particle.

When a hyphal unit absorbs 3 nutrient particles, it creates one new hyphal unit at
a randomly chosen unoccupied neighboring site and consumes the stored nutrient. Up
to two daughter hyphal units are created by the parent one in the same mycelial plane
to proceed dichotomous branching. When the neighboring sites in the same mycelial
plane are already occupied, a higher or a lower plane is randomly chosen and the same
process is repeated for the new plane. In case that no vacant site remains for a hyphal
unit to create its daughter hyphae, it accumulates up to 4 nutrient particles and ceases
absorbing.

For the nutrient diffusion, any one of the lattice sites is chosen at random. When
the chosen site has at least one nutrient particle, a particle is released to walk at random
for Rs steps. In the simulation, one sequence of random walk is regarded as the time
unit. Since the trajectory length Rs is proportional to the diffusion coefficient in one
unit time, let us regard the step length Rs as the diffusion coefficient of nutrient
particles.

The growth rate Gr is defined as the frequency of nutrient uptake for unit time.
When the random walk of nutrient was repeated n times before one nutrient uptake, Gr
is equal to 1/n. In case that nutrient uptake occurs m times per one nutrient walk, Gr is
m.
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4.  Results and Discussion

Examples of model colonies at a fixed Rs are shown in Fig. 1. Splitting and
ramified shapes appear with decreasing nutrient and growth rate. At high nutrient level
with low growth rate, the colony forms thick layers due to the high nutrient influx.
Under this condition, the growth is reaction-limited since the growth rate is the limiting
factor for colony expansion. At low nutrient level with high growth rate, the colony is
enlarged with thin mycelial layers. The nutrient influx or the nutrient level is the
limiting factor. Since the nutrient particle diffuses into the colonized area during
random walk without being trapped by the hyphae, hyphae are created homogeneously
inside the colonized area. Thus, a typical branched shape that is generally seen under
diffusion-limited growth does not appear.

Fig. 1.   Morphology diagram of model colonies. Model colonies were grown up to 10000 hyphal units with the
fixed nutrient diffusion Rs of 50 steps. Initial nutrient level indicates the number of nutrient particles initially
stored in each lattice site. Light color indicates higher mycelial layers.
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Figure 2 shows the photographs of A. nidulans wild type strain colonies cultivated
for 10 days and the mutant strain colonies cultivated for 40 days. Although the wild
type strain forms circular colonies under all conditions tested, the size of the colony is
slightly larger at lower nutrient levels. There appeared roughening in the colony
interface at relatively high nutrient levels. At high nutrient level, hyphae were
produced densely inside the colony. However, the colonies ceased to grow with large
area of the medium space left unoccupied. This is thought to be due to the accumulation
of inhibitory metabolite inside the colonized area. In the previous study on Aspergillus
oryzae (MATSUURA, 1998), the germination rate at the neighboring sites of the growing
colony was found reduced with time. This showed the decaying condition of the
medium around the colony. Oppositely, colonies at low nutrient levels expand to cover
almost entire medium surface with far less hyphal density.

The growth of mutant strain was remarkably lowered at low nutrient levels, and

Fig. 2.  Colonies of Aspergillus nidulans wild and mutant strains. Left row shows the colonies of a wild type
strain at various nutrient levels cultivated for 10 days, and right row shows those of a mutant strain cultivated
for 40 days. The bar indicates 2 cm.
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the colonies exhibited roughened or ramified morphologies at these conditions. With
increasing nutrient or agar content, colony shapes became similar to the compact
morphology of the wild type strain.

To relate the growth rate of colonies with the nutrient levels, changes of colony
sizes estimated from the photograph of colonies were plotted against cultivation days
in Figs. 3a and 3b. The colony expansion of the wild strain was found lower as the initial
nutrient level was raised. The colonies at high nutrient levels almost stopped expansion
within 30 days, while those at low nutrient levels expanded to cover the entire medium
surface.

The growth of mutant strain was quite similar to the wild strain at high nutrient
levels. However, at low nutrient, the hyphal growth was found suppressed for the first
20 days. After this period, the colony began to expand forming complex shapes.

Let us now apply the model morphology diagram to the real colony patterns. In
Fig. 4, the growth rate-nutrient level relations for wild and mutant strains were
schematically drown on the morphology diagram of model colony. For the wild strain,
the growth is diffusion-limited or nutrient level-limited at low nutrient level since the
growth rate is maintained higher. As the nutrient level is raised, the growth rate is
lowered probably due to the accumulation of inhibitory metabolites, and then the
colony morphology approaches the roughening area in the diagram. Then, further raise
of nutrient level brings about reaction-limited colony formation with lowered growth.

For the mutant strain, the growth rate-nutrient level relation is changed into lower
growth at low nutrient levels as compared with the wild type strain. Thus, the colony
morphology moves toward the ramified region at low nutrient levels as indicated in the
figure.

Fig. 3.  Colony expansion of Aspergillus nidulans wild and mutant strains. Change of colony diameters were
plotted against days since inoculation for a, the wild type strain; and b, the mutant strain. Colony diameters
were calculated by approximating the colonized area as a circle.
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5.  Concluding Remarks

In this letter, a colony model with three independent control parameters, growth
rate, nutrient level, and nutrient diffusion, was proposed to make a basic morphology
diagram of mycelial colony. Then, the relation between the colony growth rate and the
initial nutrient level was considered for the real fungal strains to apply the diagram. The
difference in the colony patterns of wild and mutant strains at low nutrient levels was
understood as caused by a change in the above relation.

Measurement of the growth rate-nutrient level relation for the fungal strains is
expected useful to understand the diversity in the colony patterning under the change
of other environmental factors, such as the stiffness of the substrate. As a future
problem, the change of growth rate in the growth processes will have to be considered
both in the model and in the measurement of real colonies, though the growth rate was
kept constant in the model simulation of this study.
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Fig. 4.  Morphology diagram of model colony and its application to the real colony patterning. Large arrows
schematically indicate the relation between nutrient level and growth rate of the strains. Solid arrow shows
the relation for the wild type strain, and broken arrow indicates the mutant strain. Vacant arrow means a
morphological transition of colonies at low nutrient levels from wild type to mutant.


