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Abstract. By pureanalogy with ausual three-dimensional origami, we can fold aregular
octahedral material along flat facesin 4-space. The octahedron comprises four congruent
tetrahedra. Wewill show aprocedureto fold atetrahedron al ong bisectors of the dihedral
angles. Thisprocedure demonstratesthat each two of four surfacesof thegiventetrahedron
coincide with each other and that the point of intersection of those bisectorsisthe center
of theincircle. Wewill provethat thereisakind of afol ded tetrahedron whose flaps swing
freely. Consistently joining such folded tetrahedrawhich construct theregul ar octahedron,
we obtain a four-dimensional bird-base. As its cross-section in 3-space, we can see a
traditional bird base. Concerning thethree-incircletheorem on atrianglefound by Husimi
and Husimi (1979), wewill provethe similar theorem for one of four congruent tetrahedra
which consist of an octahedron having the 4-fold symmetry.

1. Introduction

For origami artists, a square is the origin of every form. It has two kinds of mirror-
symmetry along its diagonals and along its vertical bisects of the edges. A baseisaterm
used for ashape madefromtheoriginal squarethat givesriseto avariety of models. A bird-
base is the source of the traditional crane origami and its folding pattern comprises four
rectangular-equilateral triangles.

During the process of getting the bird base from a preliminary base, two sides of the
flap touch and the flap lies flat while the flap has stretched. As pointed out by HusIMI and
HusiMI (1979), thefact that theflap liesflat and swingsfreely likeahingeisclosely related
to the incenter theorem on atriangle.

They tried to makean origami crane by using aquadrilateral whichisshaped likeakite
with two lower sides longer than two higher sides. First they proved the three-incenter
theorem on a triangle which gives us how to find the center of the crane made from this
quadrilateral. Thus they obtained an origami crane from a kite-shaped quadrilateral and
developed aflying cranefromit (Husimi and Husim1,1984). Thistheory about avariety of
origami cranes has been extensively developed by JUSTIN (1994) and KAWASAKI (1995a,
1998).
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As afour-dimensional origami we use a regular octahedron as a basic material asin
Fig. 1(a) and fold it along flat faces in 4-space determined by the xyzu-coordinates
(KAWASAKI, 1995b). MiYAzAKI (1997) made a 4-dimensional “Noshi” from a regular
octahedron, wherea“Noshi” isthetraditional Japanese model of thefolding. Our problem
isto make a 4-dimensional bird-base by means of the incenter theorem. In Sec. 2 we will
explain how to fold atetrahedron and prove that there is afolded model whose flaps swing
freely. In Sec. 3 we will show a procedure for getting the four-dimensional bird base. In
Sec. 4, we will prove the three-incenter theorem for one of four congruent tetrahedra that
comprise an octahedron having the 4-fold symmetry about itsdiagonal AC asin Fig. 1(b).

2. Folding Tetrahedron around the Incenter

By pure analogy with athree-dimensional origami we use aregular octahedron asthe
basic material and fold it along flat facesin 4-space. A tetrahedron in 4-space corresponds
to atriangle in 3-space. We will show how to fold a tetrahedron by using the incenter
theorem on atetrahedron. Asatypical example, let ustake one of four congruent tetrahedra
which comprise aregular octahedron. Figure 2 shows this tetrahedron ABCD, where |l is
the incenter, M the midpoint of BD, and Q, R, Sand T the tangency points at which the
sphere inscribesin ABCD touches its four faces. Each time the tetrahedron isfolded it is
divided into two or more small tetrahedra. The u-coordinate is supposed to bein avertical
direction because it is perpendicular to the xyz-space. Then new small tetrahedra lie in
different heights along the u-direction and are represented by a tree structure with nodes
(UcHIDA and IToH, 1991). The depth of the tree means the step of the folding procedure.
The procedure for folding the tetrahedron ABCD is as follows (see Fig. 2):

1) Fold the top half ACDM to the bottom ABCM.

2) Insidereverse-fold ABMI and BCMI while crimp-folding BTMI.

(for these two folds see ENGEL (1989))
3) The completed fold.
First, the vertex D is superposed to B in 4-space and the tangency point R to Q. Then the
midpoint M is superposed to E and the tangency points Sand T to Q. Note that B, Q and
E lie on the plane ABC. We can see that in Fig. 2(c) the four flat faces of the original
tetrahedron lieon the plane ABC. In Fig. 3, heights of the small tetrahedra are represented
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Fig. 1. Octahedra, a) aregular octahedron and b) a kite-shaped octahedron.
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asin fractions related to a scale of the arbitrary small unit, whose information shows the
stacking order of the small tetrahedra along the u-direction.

There is an another procedure for folding ABCD. Let us make a hollow model of a
tetrahedron from a sheet of paper, and then squash and flatten it. Figure 3 showsthat there
is afixed point which coincides with the tangency point Q and that there are two kinds of
flatten models. One model shownin Fig. 3(a) hasthe same stacking order asthe completed
folding asin Fig. 2. In Fig. 3, we give triangleswhose heights are asin Fig. 2. We can use
those flatten models of atetrahedron to study how flaps move. Thus the model shown in
Fig. 3(a) hasflapswhich swing freely around the point Q asapin. However another model
shown in Fig. 3(b) has not such flaps because the flaps are fasten into apocket. To seethis
factindetail let uslook into threeintersections S;, S,and S; between the fol ded tetrahedron
and x=0planeasin Fig. 3. Thoseintersections are looked similar to onesthat we seewhen
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Fig. 2. Procedure of the folding tetrahdron with its yz-plane view.



52 K. KAaINO
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Fig. 3. Two flatten models of afolded tetrahdron, a) models with swinging flaps and b) models with fastened
flaps; S;, S, and S; are the intersections of those models with the x = 0 plane.

thetriangle BOD in Fig. 2 isfolded using theincenter theorem. Because the incenter of the
triangle BOD is different from the incenter of the tetrahedron ABCD, the flaps are lower
than those of the folded triangle.

3. Four-Dimensional Bird Base

We have shown by the above four-dimensional origami that the incenter theorem on
atetrahedron is demonstrated by the procedure of folding tetrahedron and that thereis a
kind of folded tetrahedrawhose flaps swing freely. By consistently joining such thefolded
tetrahedron which comprise an octahedron we will obtain a four-dimensional bird-base.
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Let usfold aregular octahedron asin Fig. 1(a). The procedure for obtaining the bird
base is the following:

1) Fold the back half AECDF to the front AECDB.

2) First fold ACDM to ABCM and then ACEN to ABCN, where M and N are the
midpoints of BD and BE.

3) Thisis a four-dimensional preliminary fold. Inside reverse-fold ABMI and
BCMI whilecrimp-folding BTMI, where | istheincenter of ABCD. Repeat thisfolding on
the lower half ABCN at the same time.

4)  The completed bird-base.

Suppose that at each step we look into the intersection between a folded octahedron
and the x = 0 plane. Then we can see that the intersection looks like one when we fold a
square. On a four-dimensional preliminary base the intersection is the same as a three-
dimensional preliminary base. Folding the bird-base and stretching its flapsin 4-space we
will see a four-dimensional flapping bird and an origami crane. From various three-
dimensional bases (ENGEL, 1989) wewill obtain their four-dimensional basesaccording to
the similar way.

4. The Three-Incenter Theorem on a Tetrahedron

To make an origami crane from a quadrilateral whose shape isakite asin Fig. 4 we
start from finding out the center of the crane using the three-incenter theorem (Husimi and
HusimI, 1979).

Theorem 1 (Thethree-incenter theorem on atriangle) In AABC, let L be the incenter
of AABC and O thetangency point at which theincircletouches AB. Divide AABC into two
AABO and ACBO by BO whose incenters are denoted by M and N respectively. Then MN
is perpendicular to OB.

Let Pbetheintersection of BO and MN. Thekey for the proof isthat thetangency point
O satisfies the relation AB + OC = BC + OA and then OP = (OA + OB — AB)/2= (OB +
OC -BC)/2. JUSTINE (1994) called the point O the center of the crane (the point of L oiseau
inFrench). Let usconsider aquadrilateral withinscribed circle(qwic) called by Husimi and
HusiMI (1984). He showed that for agwic ABCD, the center of the craneistheintersection
of branches of two hyperbolas given by the relation AB + CD = BC + AD. This theorem
gives us how to determine the center of the crane. When bringing MA, MB, MO, NC, NB
and NO together by mountain-folds, the triangle MON swings freely with MN as a hinge
asin Fig. 4(b).

As a four-dimensional origami let us study an octahedron as in Fig. 1(b) that has
rotational symmetry of order four and whose intersections ABCE and ADCF are the kite-
shaped quadrilateral. For a quarter of this octahedron, ABCD in Fig. 5, we find out the
following theorem.

Theorem 2 (Thethree-incenter theorem on atetrahedron) On the tetrahedron ABCD,
let L be the incenter of ABCD and G the tangency point at which the inscribed sphere
touches AABC. Let H be the intersection between BG and AC. Divide the tetrahedron
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Fig. 4. The bird-base derived from a kite-like quadrilateral and its folding pattern.

Insphere of ABCDE

Insphere of ABCD

Insphere of ABHD Insphere of BCHD
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b) MN L ABHD, MN L DH

Fig. 5. The three-incenter theorem about a tetrahedron, a) the point of the crane H and b) the xz-plane view of
the configuration of three inspheres.
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ABCD into two small tetrahedrons ABHD and BCHD whose incenters are denoted by M
and N respectively. Then MN is perpendicular to ABHD.

Let usassumethat OA = aissmaller than OC =casin Fig. 5. Then theincenter L has
the coordinates (s, r, r), where theinradiusr =r(a, c) and s=s(a, c) are

+ 1+2c2 —cy1+2a2
rac) = a+c . Ha0)= avl+2c” —cyl+2a

2(a+c) +v1+2a? +vy1+2¢? 2(a+c) +41+2a% +1+2c?

AsH has the x-coordinate h = (r — 1)/s, M has the coordinates (s,, r;, r;) and N (-s,,
r,, ry), wherer; =r(a, h), s, =s(a, h), r, =s(b, -h), s, = s(b, —h). Let P be the point at which
the inscribed sphere of ABHD touches ABHD, and P' the point at which the inscribed
sphere of BCHD touches ABHD. Using those coordinates we can show that P coincides
with P'. Thus the theorem is regarded as the four-dimensional version of Theorem 1.

Now we will show another way to find out the point H. Let | be the incenter of the
pyramid ABCDE as in Fig. 5(a) that comprises the tetrahedron ABCD and its reflection
about the y = 0 plane. The incenter | is the point of the intersection of the bisector planes
of the dihedral angles of ABCD. Two of those bisector planes AIBC and AIDB and they
=0 plane determinetheincenter |. Theincenter | isthe point at which BL intersectsthey=
0 plane. Thus H isits projectionin the z= 0 plane. Figure 5(b) shows the xz-plane view of
the configuration of thethreeinspheresinthe ABCD. Notethat the projection of MN to the
y = 0 planeis perpendicular to DH.

L et us make the hollow tetrahedron ABCD and then squash and flatten it. Using this
flatten model we will see that the incenter M of ABHD coincides with the N of BCHD.

Using Theorem 2 we can determine the point of the crane and then we will obtain the
4-dimensional bird base by folding the kite-shaped octahedron.

5. Conclusions

We have folded tetrahedra in 4-space and shown how to fold the four-dimensional
bird-base from an octahedron. We have obtained the following results.

(1) When atetrahedronisfolded by using the incenter theorem, itsfour faceslie on
one of those face.

(2) Theflatten model of tetrahedron hasthe same stacking order of small partsasthe
folded tetrahedron has.

(3) Thereisonekind of the folded tetrahedron whose flaps swing freely.

(4) For one of the four congruent tetrahedra consisting of akite-like octahedron, the
three-incenter theorem is obtained and demonstrated by using a flatten model of the
tetrahedron.
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