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Abstract.  Excitable properties of selected biochemical reactions in one compartment
subject to external periodic stimuli, the spreading of signals elicited by periodic stimulation
in a linear array of compartments and the spreading of pulse wave trains in a continuous
medium are studied. A method of calculating a threshold set and a criterion for its
disappearance are formulated. Two kinds of excitability distinguished by either direct or
indirect initiation of the activatory process are discussed. The response of the one- and
two-compartment systems to periodic perturbations is studied upon varying a bifurcation
parameter. Transitions from periodicity to quasiperiodicity and to chaos are observed.
The problem of intercellular signalling is addressed by observation of an excitable pulse
propagation in reaction-diffusion media with an oscillatory pacemaker entrapped within
the excitable domain. The signalling patterns are analysed by proper orthogonal
decomposition based techniques and effects of electric field applied to the system are
examined.

1.  Introduction

Biochemical processes within the cell environment may serve a host of different
purposes. Of particular interest here are excitable processes whose dynamics are sensitive
to perturbations. There are many examples of excitable systems in chemistry and biology
(HOLDEN et al., 1991), ranging from the Belousov-Zhabotinsky chemical reaction (FIELD

and BURGER, 1990) to calcium spiking in many types of cells (GOLDBETER, 1996) to action
potentials in specialized neural cells (HODGKIN and HUXLEY, 1954). A typical excitatory
event follows a superthreshold stimulus applied to the system at rest which triggers an
autocatalytic increase of some intermediate(s) until an inhibitory decay dominates, leading
eventually to the original rest state. Stimulus may be repeated periodically, either by
externally controlled conditions (such as drug administration) or by some internal oscillatory
process in the neighborhood of the cell transduced inside or an oscillatory subsystem within
the cell. Periodic forcing induces repeated firings which may or may not catch up with the
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pace of stimuli depending on the strength and period of the stimulus. The dynamics may
become complex when the cell is unable to respond by an excitation to each external
stimulus (VOTRUBOVÁ et al., 1998, HASAL et al., 1996, SCHREIBER et al. 1999). Apart from
neurons, intercellular signalling is known to occur in various cell systems (COOPER, 1995;
BOITANO et al., 1992).

Propagation of Ca2+ waves through cell assemblages is known to occur in a large
number of tissues (BERRIDGE et al., 1998). Increases in the intracellular calcium
concentration that spread from cell to cell—the calcium waves—form a versatile tool for
coordination of many cell activities. Cell-to-cell propagating calcium signals can be
evoked by a variety of stimuli, including chemical, mechanical and electric stimulation.
The cells in a tissue may exhibit various responses to the stimulation. The cell can start to
oscillate, to perform single or repeated firings or it may remain in its original state etc. The
actual cell response depends on local external constraints, e.g., concentration of chemical
species, local electric potential gradient, local mechanical stress and also on cell history.

In the first part of the paper we examine systematically dynamical response of one
biochemical cell to pulsed external forcing provided that the process of interest within the
cell—calcium dynamics—is excitable. We find that the degree of dynamic complexity
depends on the type of excitability and on the strength of the excitatory event. Diffusion-
like coupling of two cells increases further the complexity of the pattern if the coupling
strength is appropriately adjusted.

When a cell (or a group of cells) in the tissue is set to the oscillatory state it starts to
perturb the neighboring cells via chemical communication (chermical species exchange)
through the gap junctions connecting the cells (BOITANO et al., 1992). In this case the
periodic perturbation imposed by the oscillating cell(s) results in an oscillatory response
of the stimulated cells in a form of pulse waves propagating through the tissue. This issue
is analyzed in the second part of this paper.

2.  Chaotic Dynamics in Periodically Pulsed Cell Systems

2.1.  Model equations
Here we shall use a model of intracellular calcium dynamics according to the one-pool

variant of the CICR mechanism (DUPONT and GOLDBETER, 1993). Dynamics of calcium in
cells is ubiquitous in animal cells and displays both oscillatory and excitatory modes.
However, other biochemical excitable systems, e.g. the papain system (CAPLAN et al.,
1973), show the same kind of behavior when periodically perturbed. According to the
CICR (Calcium-Induced Calcium Release) model, the key species are the inositol 1, 4, 5-
trisphosphate (IP3), the cytosolic Ca2+(Cai) and the calcium ions sequestered in an
intracellular store (Cas). From a mechanistic viewpoint, Cai is the autocatalytic species, Cas
plays a regulatory role, IP3 controls the system as a constraint.

In the absence of a mass transport within the cell the dynamics is governed by the mass
balance equations

dx

dt
f x y V V V k y kxf= = − + + −( , ) , ( )in 2 3 1
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and x is the concentration of Cai, y is the concentration of Cas, Vin is total constant entry of
Ca2+ into the cytosol consisting of v0, the constant influx and v1β, the IP3-stimulated influx
from extracellular medium, V2 is the rate of pumping into the internal store, V3 is the rate
of release from the store, kf is the coefficient of the passive efflux from the store, k is the
rate coefficient of the passive efflux from the cytosol. The saturation parameter β
represents the regulatory role of IP3. In all the calculations we use the values given in Table
1. In order to find excitable conditions we treat v0 and β as adjustable parameters to set
appropriate dynamics.

2.2.  Excitability
The region of periodic oscillations shown in Fig. 1 is marked by the Hopf bifurcation

curve. In fact, this bifurcation is mostly subcritical and thus the oscillations occur also
outside this region. However, the additional region of hysteresis is negligibly narrow. As
indicated in Fig. 1 we find two different kinds of excitability in this system. The first one,
which we call the activatory excitability, is associated with a low-x-high-y steady state.
Addition of x or y triggers the usual excitatory event beginning with the activatory (or
autocatalytic) phase which increases x and depletes y until the inhibitory phase sets in to
consume x and replete y. The other, somewhat counterintuitive type—inhibitory
excitability—is associated with a high-x-low-y steady state. The excitation elicited by
removing x or y begins with the inhibitory process which removes x even more and
simultaneously repletes y, and terminates by the autocatalysis. Another classification of
excitable systems distinguishes between multiple steady state (type I) and single steady
state (type II) phase portraits (MAREK et al., 1989); in the present case we have a unique
steady state and therefore the type II excitability.

To draw the boundaries along which excitability vanishes requires a quantitative
rather than qualitative definition of this phenomenon. We consider a threshold set as locally

Table 1.  Parameter values for the CICR model.

Par. Value Par. Value Par. Value

kf = 1.0 min–1 K2 = 0.5 µM n = 2.0
k = 10.0 min–1 VM3 = 325.0 µM min–1 m = 2.0
v1 = 1.7 µM min–1 KR = 1.0 µM p = 4.0
VM2 = 50.0 µM min–1 KA = 0.45 µM
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separating the phase space into a set of trajectories amplifying initial perturbations and a
set of trajectories decaying to the steady state soon after the perturbation. For the type I
excitability, the threshold set is essentially a stable manifold of a saddle steady state which
can be easily identified. This is not possible for the type II excitability and so the threshold
set should be chosen in an appropriate way. More specifically, the threshold set should be
a codimension one continuous set of trajectory segments possessing two properties: a)
there is a minimal and a maximal point on each trajectory segment within the threshold set
such that the former is the nearest and the latter is the most distant point relative to the
steady state—this provides a measure of amplification; the threshold set terminates at the
locus of maximal points, b) the separation of nearby trajectories from the threshold set
should be at a maximum possible rate providing thus a distinct boundary between
excitatory and nonexcitatory responses.

The two-variable system (1), (2) has a one-dimensional threshold set. Since we have
type II excitability we are looking for a trajectory segment. For a general two-variable
system described by dx/dt = v(x) let xS be the steady state, xP the minimal and xR the
maximal point on a trajectory. The point xP is thought as the state immediately after a
pulsed perturbation from the steady state. The perturbation and response amplitudes are

P RP S R S= − = −x x x x, ( )     4

Fig. 1.  Bifurcation diagram in the parameters v0 and β, dashed line—Hopf bifurcation, full line—vanishing
excitability.
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and hence P is a minimal possible pulse amplitude to reach the trajectory with the maximal
response at xR. Next we define an amplification ratio,

r
R P

P
= −

. ( )5

The threshold trajectory is found by requiring maximal possible rate of separation of
nearby trajectories which is expressed as maximum sensitivity of the amplification ratio
with respect to P,

dr

dP
=
!

max. ( )6

A variational principle used to formulate and solve the associated boundary value problem
for the threshold set will be discussed elsewhere.

As the parameters v0 and β approach the outer boundary in Fig. 1, the perturbation
amplitude increases, the threshold set shrinks and its separation properties weaken. The
excitability of the system may vanish in two ways, either the amplification drops below the
limiting value of r = 1, or the maximum of dr/dP disappears by coliding with a minimum.
Which one is the case depends on the model—the former is the actual mechanism for the
CICR model. Similar quantities as r may be defined but all give very similar results.

2.3.  Periodic forcing of one cell
We assume that the concentration of Cai can be changed suddenly as a consequence

of a periodically repeated external perturbation. This can be modelled as a periodic series
of delta pulses shifting immediately the value of x and Eqs. (1) and (2) now become

  

dx

dt
f x y h x t kT k= + ∑ − =( , ) ( ) ( ), , , ( )δ       1 7K

dx

dt
g x y= ( , ), ( )8

where k counts the number of pulses, T is the period of pulse deliveries and h(x) is the
change in x due to the pulse. When addition of Cai is considered, this function is chosen to
be simply a constant, h(x) = A. However, removal of Cai modelled in this way might shift
x to negative values and thus we choose h(x) = x(e–A– 1). In both cases we call A the forcing
amplitude.

We examine the system (7), (8) numerically by using continuation method (KUBÍCEK

and MAREK, 1983; MAREK and SCHREIBER, 1995) to find variations of periodic solutions
with A and/or T, their stability and bifurcations. In addition, we also solve Eqs. (7) and (8)
directly and charaterize the complexity of dynamics by Poincare maps and Lyapunov
exponents. Moreover, the excitatory dynamics is well characterized by introducing excitation
(or firing) number v,

ˇ
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v = number of excitatory responses

number of pulses
( )9

in the limit of large number of pulses k. Thus v is an average number of excitations per one
pulse. Here we can conveniently use the notion of the threshold set introduced earlier to
distinguish between excitatory and nonexcitatory repsonses. A response is considered as
excitatory if the pulse penetrates the threshold set or, equivalently, if the trajectory loops
around the endpoint of the threshold set. Periodic orbits have v = p/q where p, q are integers
and qT is the period. For further calculations we fix β at 0.2 and examine the dynamics of
the forced system at various values of v0 within the two regions of excitability (cf. Fig. 1).

Figures 2a and 2b show the A–T bifurcation diagrams of the period one orbit at v0 =
1.2 and v0 = 5.0. There are instabilities due to the fold bifurcation, period doubling and torus
bifurcation. The corresponding unstable regions suggest where the dynamics will likely
become complex. Also, the threshold perturbation amplitude for the period one orbit to

Fig. 2.  Bifurcation diagrams for period one orbit in the parameters T and A; (a) v0 = 1.2, (b) v0 = 5.0; full line—
fold bifurcation, dashed line—period doubling, dotted line—torus bifurcation.
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become unstable is nearly constant for large T as one might expect but decreases rapidly
when T becomes smaller. Let us remark that analogous calculations for v0 below the
boundary for activatory excitability and above the boundary for the inhibitory excitability
show that these bifurcation structures shrink and disintegrate almost completely and thus
suggest that the criteria (5), (6) used for constructing the boundary have significant
predictive power.

Figure 3 shows the excitation number v and the maximal Lyapunov exponent λ1 with
varying T for the case of the activatory excitability. The excitation number is at the first
glance a nondecreasing step-wise function of T (panel (a)) reflecting the gradually larger
time for the system to recover before next pulse is delivered and hence more frequent
excitations. Every p/q regime corresponds to a plateau. The blow-up in panel (b) shows that
even a very narrow step between 1/3 and 1/2 resonances reveals fine step-wise structure but
it also indicates that the value of v drops occasionally. More information provides the plot
of λ1. First of all, there are positive exponents (and hence chaotic dynamics) at some of the
steps and second, these chaotic dynamical regimes occur predominantly where v drops. A
similar picture emerges when the inhibitory excitable system is periodically perturbed.

The nature of chaotic attractors appearing in many windows is indicated in Fig. 4
showing phase portraits and Poincare sections taken successively at t = kT. The first case
corresponds to the activatory excitability. The phase portrait (a) indicates the separating

Fig. 3.  Excitation number v and maximal Lyapunov exponent λ1, against forcing period T, v0 = 1.2, A = 0.24;
(b) and (d) are enlarged portions of (a) and (c).
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Fig. 4.  Phase portraits (a), (c), (e) and Poincare plots (b), (d), (f) for three chaotic attractors; parameter values:
(a), (b) v0 = 1.2, A = 0.24, T = 1.38945, (c), (d) v0 = 5.0, A = 0.6, T = 0.2153, (e), (f) v0 = 6.0, A = 0.6, T =
0.219.
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role played by the threshold set. On the other hand, the Poincare map (b) is extremely
simple, suggesting that a 1D map is operating here. The second example (panels (c), (d))
is from the region of inhibitory excitability. The Poincare map (d) is, however, indicating
that a fractalization of a torus leads to this attractor. The last example is showing an
attractor with a well pronounced fractal structure which occurs when v0 is selected closer
to the boundary of vanishing inhibitory excitability.

2.4.  Periodic forcing of two cells
Diffusion-coupled array of cells is the basic model for describing communication

between cells via gap junctions where the simple diffusion driven interaction takes place.
The interaction can only be mediated by cytosolic calcium Cai since the transport of
sequestered calcium Cas is hindered. Taking the simplest possible array—two coupled
cells—the Eqs. (1) and (2) extend to

dx

dt
f x y d x x

dy

dt
g x y1

1 1 2 1
1

1 1 10= + − =( , ) ( ), ( , ), ( )     

dx

dt
f x y d x x

dy

dt
g x y2

2 2 1 2
2

2 2 11= + − =( , ) ( ), ( , ), ( )     

where d is the transport coefficient.
We assume that cell 1 is periodically pulsed as before and examine how the excitation

signal gets transferred to the second cell. The conditions in both cells are set either to
activatory excitability (v0 = 1.2) or to inhibitory excitability (v0 = 5.0). The coupling
strength has two obvious limits, when d is too small, no signal is propagated; when d is large
enough, the cells fire synchronously. Depending on circumstances, the actual coupling
strength may operate between the two limiting cases, in fact, this situation allows for a
controlled way of signal transduction. We assume that the threshold set is not significantly
altered by coupling and that the excitation numbers v1, v2 can be defined by counting the
number of loops about the endpoint of the threshold set in each cell separately.

Adjusting the transport coefficient properly, complex dynamics is revealed by plotting
v1, v2 and the maximal Lyapunov exponent λ1 against T, see Fig. 5. The cases (a) and (c)
correspond to the activatory excitability with d set to 6.0 and the cases (b) and (d) represent
the dynamics of the inhibitory excitable system with d adjusted to 1.6; the forcing
amplitude A is the same as for the corresponding one-cell systems. Excitation numbers in
(a) show a complex pattern with mostly a partial propagation of the excitation to the second
cell. The dominating pattern is 1:2 locking between the cells, only occasionally there is no
propagation or complete propagation. Frequent drops of the staircase suggest possible
chaotic dynamics which correspond well with positive λ1 in (c). Panels (b) and (d) show
essentially a similar pattern of alternating periodic and chaotic dynamics. However, there
are some differences in the degree of synchronized firings—while for small T the two cells
fire synchronously, for larger values the pattern alternates between no propagation and
complete synchrony. This pattern cannot be made similar to that in (a) by adjusting d. This
seems to reflect the difference between the activatory and inhibitory excitability.
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3.  Chaotic Spatio-Temporal Patterns in Ca2+ Signalling System

In this section problems are analyzed associated with propagation of excitable pulse
waves in spatially one-dimensional continuous medium, e.g., in a tissue formed by an
assemblage of mutually coupled neural cells, where a part of the medium—a pacemaker—
is set to the autonomous oscillatory state and the remainder of the system is in an excitable
steady state making it capable of pulse wave transmission. The oscillating pacemaker
perturbs (at its borders) the adjacent excitable regions and subsequently emits pulse waves
into them. When no external fields affecting mass-transport rates in the system are present,
the pacemaker emits the pulse waves symmetrically to both excitable regions. After the
application of, e.g., electric field to the system, the symmetry is lost and one of the excitable
regions communicates by pulse waves more frequently than the other one and also the
spatial range of the signalling is changed. Here we address two particular topics of this
signalling problem: The effects of the relative pacemaker size and of the intensity of
electric field applied to the system on signalling behavior of the system. A transition from
the periodic spatio-temporal signalling patterns to the chaotic ones is analyzed using the
proper orthogonal decomposition (POD) based techniques.

Fig. 5.  Excitation numbers v1, v2 and maximal Lyapunov exponent λ1 against forcing period T for two coupled
cells; parameter values: (a), (c) v0 = 1.2, A = 0.24, (b), (d) v0 = 5.0, A = 0.6.
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3.1.  Mathematical model
We consider a homogeneous one-dimensional reaction-diffusion medium as the

environment where the calcium signalling takes place. First, the ICC kinetics of intracellular
calcium oscillations is briefly introduced and then the signalling system model is constructed.

3.1.1.  The ICC kinetics of intracellular calcium oscillations
The inositol 1, 4, 5-trisphosphate (IP3)—calcium cross-coupling model (ICC) of

calcium spiking in living cells (cf. MEYER and STRYER, 1991) belongs to the family of
intracellular calcium kinetics models based on the receptor-controlled mechanism. The
IP3-Cai cross-coupling model of calcium spiking involves four variables: x, the concentration
of Ca2+, in the cell cytosol; y, the concentration of Ca2+ sequestered in the intracellular
stores (endoplasmic and/or sarcoplasmic reticulum); u, the concentration of IP3; and v, the
fraction of active ionic channels through which the sequestered calcium is released from
the intracellular stores into the cytosol. The evolution equations of the ICC model are
(assuming well stirred reaction environment)
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The values of the kinetic parameters in Eqs. (12)–(15) used in numerical simulations
reported in this paper are summarized in Table 2 (cf. MEYER and STRYER, 1991) together
with other model parameters.

Table 2.  Parameters of the ICC calcium signalling model.

Par. Value Par. Value Par. Value

A = 20.0 s–1 K1 = 0.5 µM Ev = 1.0 µM–4 s–1

B = 40.0 µM s–1 K2 = 0.15 µM Fv = 0.02 s–1

C = 1.1 µM s–1 K3 = 1.0 µM R = 0.025
D = 2.0 s–1 L = 0.01 s–1 x0+y0 = 1110.0 µM
Rpac = 0.500 Rexc = 0.025 Dx = 0.5 µm2 s–1

Dv = 15 µm2 s–1 zx = +2 zu = –6
Zl = 100 µm εp ... variable ε ...  variable
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3.1.2.  The spatio-temporal ICC signalling system
The ICC kinetics of intracellular Ca2+ ions was assumed to take place within one-

dimensional reaction-diffusion medium. The total length of the system Zl was divided into
oscillatory and excitable regions: The oscillatory region (pacemaker) was assumed to be
located symmetrically around the center of the system with two excitable regions (of the
same size) connected to its borders. The magnitude of the pacemaker region was expressed
by its relative size εp = Zp/Zl, where Zp is the pacemaker length. An electric field applied
to the system boundaries was considered with the electric field intensity ε constant
throughout the system due to high ionic strength of the cytosol. The cytosolic Ca2+ ions
(variable x) and cytosolic IP3 ions (variable u) are considered as mobile components in our
model and both the diffusion and electro-migration (described by the Nernst-Planck
relation) are involved in their transport equations. The Ca2+ ions sequestered in the
endoplasmic reticulum (variable y) and the ionic channels in the ER membrane (variable
v) are taken as immobile components. The model equations (mass balances of signalling
system components) can be found in HASAL et al., 1996 and we thus omit them here. The
values of model parameters used in our simulations are summarized in Table 2. Total length
of the system considered in this paper is Zl = 100 µm.

The value of the parameter R (fractional activation of cell surface receptors) controls
dynamical behaviour of the system: at low value (R ≤ 0.0258) the ICC kinetics exhibits
excitatory dynamics (cf., e.g., MEYER and STREYER, 1991; SCHREIBER et al., 1999);
autonomous oscillations take place in stirred environment when R > 0.02568 with the
period decreasing with the increasing R (see SCHRE1BER et al., 1999). The value of the
parameter R was set to Rpac = 0.500 and to Rexc = 0.025 for the oscillatory and the excitable
regions, respectively. The relative pacemaker size εp, and applied electric field intensity ε
were considered as adjustable parameters of the ICC signalling system.

3.2.  Characterization of spatio-temporal signalling patterns
The technique of proper orthogonal decomposition (POD) is being increasingly used

as a tool for analysis and characterization of spatio-temporal chaotic patterns. We shall in
the following describe the use of the POD and the computation of the entropy-like
quantities for both the qualitative and quantitative characterization of chaotic spatio-
temporal patterns emerging in the signalling system described above.

The POD (BROOMHEAD and KING, 1986; KOLODNER et al., 1995) decomposes spatio-

temporal pattern u(z, t) = U(z, t) – U (z), where U (z) is temporal average of U(z, t), into
a set of spatial eigenmodes Φi(z) called topos and of temporal eigenmodes ai(t) called
chronos or amplitudes

u z t z a ti i
i

N

( , ) ( ) ( ). ( )=
=
∑Φ

1

16

The spatial eigenmodes Φi(z) are solutions of the eigenvalue problem

  C        NΦ Φi i i i= =α , ( , , , ) ( )1 2 17K

where α i are eigenvalues associated with the individual spatial eigenmodes Φi and the
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kernel C = C(z, z′) is a two-point spatial correlation matrix of the pattern u(z, t) (cf. HASAL

et al., 1996). The temporal eigenmode (chronos) is evaluated as inner product of the spatial
eigenmode Φi with the pattern u(z, t)

  

a t u z t z u z t z i ki k k i j k
j

N
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Quantities averaging system dynamics either over the time or the space domain alone, so
called spatial entropy Hs(t) and temporal entropy HT(z), respectively (KOLODNER et al.,
1995) are used to characterize temporal or spatial complexity of the spatio-temporal
patterns. The spatial entropy is defined as
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3.3.  Effects of pacemaker size on the ICC signalling patterns
The spatio-temporal patterns of the cytosolic calcium concentration x originating from

mutual interaction of the oscillatory pacemaker with the adjacent excitable regions in the
ICC Ca2+ signalling system are depicted in Fig. 6 where traces of the maxima of x(z, t) are
plotted for various relative pacemaker sizes εp at fixed pacemaker frequency (given by the
Rpac value). No electric field is applied in Fig. 6. The spatio-temporal dynamics of the
system undergoes substantial variations when the pacemaker size is varied: The small
pacemaker (εp = 0.008) performs simple period 1 (P1) oscillations and each pacemaker
oscillation evokes a pair of excitable pulses propagating with the same speed through both
excitable regions. However, each second pulse pair dies out before it reaches the system
boundaries. The larger pacemaker (εp = 0.042) performs periodic oscillations with periodicity
P13. Two distinct firing patterns alternate in Fig. 6c: the pattern 1:5 (i.e. each fifth
pacemaker oscillation evokes a pair of the excitable pulses) and the pattern 1:8 (cf. also
respective phase plot in Fig. 6). The excitable pulses propagate with the same speed and the
resulting spatiotemporal pattern is symmetric around the system axis. The pacemaker with
relative size εp = 0.100 oscillates with high periodicity Pn (n = 30).

The structure of the inner spatio-temporal pattern within the pacemaker regions begins
to be complex and results in a large number of short-distance propagating pulse waves
fastly vanishing in the excitable regions. The symmetry of the spatio-temporal pattern is
partly lost when large pacemaker is located in the signalling system (εp = 0.200 and 0.400).
The pacemaker oscillations become chaotic (see phase plots in Figs. 6d, e) and the pulse
waves are not emitted synchronously to both excitable regions. The structure of the spatio-
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temporal pattern within the pacemaker with εp = 0.200 is shown in Fig. 7a. The traces
clearly document complex structure of the pattern with the waves irregularly moving forth
and back within the pacemaker region. Wave splitting, annihilation and propagation
direction reversal can be detected in Fig. 7a. The pulse waves emitted to the excitable
regions originate mostly from interactions of system regions with the distinct dynamics at
the pacemaker-excitable region interface.

The leading spatial POD eigenmodes—the topos—at various intensity of the electric
field are depicted in Fig. 8. Almost perfect spatial symmetry of the topos is apparent that
results from the system symmetry when no electric field is applied. The spatial symmetry
of the pattern is reflected also in the profiles of the temporal entropy HT(z) in Fig. 9. The
entropy production rate is quite uniformly distributed across the system at the pacemaker
size below εp < 0.100. There is only a shallow minimum of the HT(z) in the pacemaker
region where the system performs more or less periodic motions. The HT(z) is also lowered
close to the system boundaries where the pulse waves vanish. The pacemaker region
exhibits significantly suppressed entropy production for large pacemakers (ε ≤ 0.100).

3.4.  Electric field control of the ICC signalling dynamics
The effects of the electric field on the intrinsic patterns in the pacemaker region are

shown in Fig. 7b. Two principal consequences of the electric field action are evident: The
propagation of the pulse waves against the direction of the electric field is suppressed and
the intra-pacemaker pattern becomes more regular.

Fig. 6.  Spatio-temporal patterns in ICC calcium signalling system (upper panels, spatial range 0–100 µm, time
range 500 min, traces of maxima of cytosolic Ca2+ are plotted) and phase portraits of system trajectory
recorded at z = Zl/2 (lower panels). Relative pacemaker size: a) εp = 0.008; b) εp = 0.042; c) εp = 0. 100; d)
εp = 0.200; e) εp = 0.400. Electric field intensity ε = 0 Vcm–1.
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Fig. 8.  Dominant topos Φ1 of chaotic upatterns in ICC calcium signalling system. a) Effects of the pacemaker
relative size (at electric field intensity ε = 0 Vcm–1), b) effects of electric field intensity (at relative
pacemaker size εp = 0.200).

Fig. 7.  Effects of electric field intensity on spatio-temporal patterns in ICC calcium signalling system. a) ε =
0 Vcm–1, b) ε = 10 Vcm–1. Relative pacemaker size εp = 0.200. The traces of maxima of cytosolic Ca2+

concentration are plotted. Spatial range: 0–100 µm; time range: 150 min.
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The electric field applied to the ICC signalling system elicits strong spatial asymmetry
of the signalling pattern generated in the system. This fact is clearly evident from the shape
of the first three leading topos of the signalling pattern (see Fig. 9b). The asymmetry arises
due to the different mobilities of both mobile components of the ICC model (positive Ca2+

ions and negatively charged IP3). The electric field also strongly influences the entropy
production rate in the system (Fig. 9b). The entropy production is supressed in the part of
the system where the pulse waves do not propagate.

Fig. 9.  Spatial distribution of temporal entropy HT(z) in ICC calcium signalling system, a) Effects of the
pacemaker relative size; electric field intensity ε = 0 Vcm–1), b) Effects of electric field intensity; relative
pacemaker size εp = 0.200.
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4.  Conclusions

It is shown that complex dynamic patterns occur even in the simplest case of one
periodically pulsed excitable cell and they are associated with localized drops of the
staircase-like dependence of excitation number on forcing period. In an array of two cells
spatio-temporal structures of partially propagated pulses occur for intermediate coupling
strengths and chaotic regimes are again associated with drops of the excitation number
when the forcing period is increased.

Spatio-temporal calcium signalling patterns in a spatially continuous environment
develop from simple pairs of pulse waves periodically emitted from the pacemaker to
complex time-periodic structures leading eventually to spatio-temporally chaotic patterns
when the relative pacemaker size is increased. The signalling patterns become more
organized under the influence of external electric field imposed to the system.

Calcium dynamics in cytosol is one of many distinct signalling pathways. Components
of different pathways interact resulting in signalling networks with emergent properties
such as welldefined input thresholds, bistability and signal modulation in response to
stimuli (BHALLA and IYENGAR, 1999). Methods of analysis presented in this paper are well
suited for investigating dynamics in this more complex situation.

The authors thank to the Grant Agency of Czech Republic (Grant No. 203/98/1304) and to the
Ministry of Education of Czech Republic (Grant VS96073) for the financial support of this project.
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