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Abstract.  In this paper we discuss the influence of nonequilibrium effects on the rate of
a thermally activated, exothermic reaction. The system with a binary process

A A B B+ ⇔ + +{ }energy  is considered as an example, on which we compare molecular

dynamics simulations with a simple phenomenology based on the assumption that a
nonequilibrium state can be characterized by many time dependent temperatures. A good
agreement between results of both methods is observed. We have found that the rate
constants are changed significantly by the nonequilibrium effects, which affects system’s
evolution.

1.  Introduction

In order to predict the time evolution of a chemical system we usually apply the
standard chemical kinetics based on the mass action law. In such approach the rate constant
is just a number, which links the concentrations of reactants with the reaction rate.

At the microscopic level of description the rate constant for an elementary reaction is
related to two factors: the reaction cross section σ∗ (Εi) for a reactive “encounter” between
reactants at a particular quantum state Εi and the rate such state appears in the system p(Ei).
In this notation the rate constant k is the average of σ∗  over all states:

k E p E
E

i i

i

= ( ) ( )∗∑σ .
(1)

Let us assume that at the beginning all reactants are equilibrated. In the case of an
activated process the energetic barrier has to be crossed and the reaction cross section
increases with the energy of interacting molecules (STILLER, 1989). Therefore the high
energy part of reactant’s distribution function p will be strongly disturbed by the reaction,
because the corresponding states can be easily transformed into products, and the rate
constant calculated from (1) shall differ from its initial, equilibrium value. As the result,
the time evolution of the system will differ from the one calculated using the equilibrium
rate (cf. Fig. 1).
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The influence of nonequilibrium effects on the rate constant has been investigated for
more than 50 years. Most of the theoretical considerations were concerned with the
thermally activated, thermoneutral chemical processes (PRIGOGINE and XHOUET, 1949;
PYUN and ROSS, 1964; SHIZGAL and NAPIER, 1996; NOWAKOWSKI, 1998). The number of
results for thermally activated egzothermic reactions is limited (see for example PRIGOGINE

and MAHIEU, 1950; XYSTRIS and DAHLER, 1978; BARAS and MALEK MANSOUR, 1989,
1997; GORECKI and GORECKA, 2000). In this paper we study the nonequilibrium effects for
the reaction:

A A B B+ ⇔ + + energy (2)

using molecular dynamics (MD) simulations. We also show that a very simple
phenomenology gives a good agreement with simulations. We think that it may be easily
applied to estimate the strength of nonequilibrium effects in other systems with egzothermic
reactions.

2.  Results

Let us assume that the activation energy for the direct process of (2) (A + A → B + B)
is EA1 and the reaction heat U > 0. Therefore the activation energy of the reverse reaction

Fig. 1.  The concentration of product B as a function of time for the system characterized by εA1 = 1 and u = 4
(εA2 = 5). The dashed line—MD simulations, the thick solid line—“classical” phenomenology (Eqs. (4) and
(5)); the thin solid line—Eqs. (6)–(8).
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(B + B → A + A) is EA2 = EA1 + U and the reaction heat–U. Our MD simulations are
performed for the simplest case in which the molecules of both A and B are represented by
identical hard spheres (the same masses an diameters). Now the only form of molecule’s
energy is the kinetic one. One can define σ* for a thermally activated process using the line-
of-centers model for reactive collisions (PRESENT, 1959). According to this model a
collision between reactant’s molecules in which the energy of the relative motion along the
line of centers calculated in the center of mass reference system exceeds EA may lead to
reaction. The probability that reaction occurs for a collision satisfying the energetic
condition is called a steric factor (sF ≤ 1).

The line-of-center model for reactive collisions can be naturally adopted in simulations
of exothermal processes. When a reactive collision of two A particles occurs the reaction
heat is released as the additional kinetic energy of outgoing B particles. In case of reactive
collision of two B particles the energy of products is decreased by the value of reaction heat
in the same way. For a Maxwellian distribution of velocities at the temperature T the
reaction rate k for line-of-centers model equals (GORECKI, 1993):

k s T
E

k TF
A

B

= ( ) −






η exp (3)

where η(T) is the frequency of collision between spheres.
Our simulation starts with all spheres marked as the reactant A and randomly

distributed in the system with velocities chosen from the Maxwellian distribution
corresponding to the initial temperature T0(t = 0). We follow system’s evolution by
checking which collisions are reactive and if so changing the chemical identity of spheres
and their kinetic energy. The periodic boundary conditions are applied so the total number
of particles is conserved and the system is adiabatic. In a single simulation run one obtains
the number fraction of A particles (α) and the average energies per particle for A(Ea) and
B(Eb) and for the system as a whole (E0) as functions of time. The outcome of a single
simulation program strongly depends on the initial conditions, therefore we present the
data, which are averaged over more than 10000 of individual runs. They have been obtained
for 512 spheres and the packing fraction of the system was 0.21. We have restricted the
simulations to the initial stages of reaction because in this region the nonequilibrium effects
are the most pronounced.

Assuming that reaction (2) proceeds in a closed system, the standard kinetic equations
describing system’s temperature and concentration of A are:
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where α  is the number fraction of A molecules and ξ0, u, εA1, εA2 are the system temperature
T0, reaction heat and the activation energies scaled to the initial temperature of the system
respectively (ξ0 = T0(t)/T0(t = 0), u = U/kBT0(t = 0), εAi = EAi/kBT0(t = 0)). Equations (4) and
(5) are written in the time scale in which η(T0(t = 0)) = 1. The accuracy of such description
for reaction (2) can be easily tested if one compares it with the results of molecular
dynamics simulations and for example for εA1 = 1 and u = 4 the outcome is rather
disappointing (compare the thick solid and the dashed lines in Fig. 1). What is the origin
of the discrepancy?

Figure 2 shows results of MD simulations (dashed lines) for average energies of A and
molecules of the system treated as a whole scaled by 3/2kBT0(t = 0) as a function of the
number fraction of A molecules for εA1 = 2 and two values of u (u = 1.5 and u = 2.5). It is
convenient to use α(t) instead of time as the measure of reaction progress. One can notice
that the differences between the average energy of A particle and the average energy per
particle of the system are significant, what indicates that the energy distribution of A
particles differs from the energy distribution of the whole system. At the initial stage of the
reaction Ea decreases because the most energetic A particles are consumed by the direct
reaction. Next it starts to increase as the result of the energy exchange in non-reactive
collisions with B particles and because highly energetic particles of B are transformed into
A in the reverse reaction.

Fig. 2.  The average energy per a particle of reagent A (the thin lines) and per an average particle of the system
(the thick lines) scaled to 3/2kBT00 as a function of α . The results are presented for εA1 = 2 and two values
of u. The dashed lines show results of MD simulations(long dashed—u = 1.5, short dashed—u = 2.5), the
thin solids lines are solutions of Eqs. (6)–(8).
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Fig. 3.  The average energy per a particle of B and per an average particle of the system scaled to 3/2kBT00 as a
function of α . Notation as in Fig. 2.

Figure 3 shows the average energy per particle of B and per a particle of the system
treated as a whole for the same sets of parameters as in Fig. 2. At the initial stage of process
the average energy of B particles is much higher than E0 because only the most energetic
A particles are transformed into B. The difference between Eb and E0 is more important than
this between Ea and E0. Now it is easy to explain the difference between MD simulations
and Eqs. (4) and (5) shown in Fig. 1. The studied reaction is very fast so the energy
exchange between reagents is not sufficient to keep the same energy distribution for all of
them. The rate constant for the direct process should be smaller than considered in Eqs. (4)
and (5) because Ea(α) < E0(α). On the other hand Eb(α) > E0(α) so the reverse reaction is
faster. Both effects “work” in the same direction, so finally the actual rate of product’s
creation is much lower than predicted by the standard kinetics. Let us notice that the effect
is qualitatively similar to the one observed for coupled reactions (GORENSEK and KOSTIN,
1984, 1985; CUKROWSKI et al., 1992; GORECKI and HANAZAKI, 1994): a fast reaction with
low activation energy (εA1) prepares a nonequilibrium distribution of reactant which
significantly changes the rate of another process with a higher activation energy.

The simplest description of the nonequilibrium effects can be given if one assumes
that the system is characterized by two different, time dependent temperatures: the reactant
A has a temperature ξA(t)T0(t = 0) and the whole system is characterized by the temperature
ξ0(t)T0(t = 0). NOWAKOWSKI and GORECKI (1996) demonstrated that similar phenomenology
gives an accurate description of the time evolution for nonequilibrium systems with
thermoneutral reactions. Considering all energy exchange processes between colliding
particles one obtains the following equations:
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The results calculated on the basis of Eqs. (6)–(8) (thin solid lines on Figs. 1–5) are in a
good agreement with simulations. Such agreement has been also obtained for the other
studied values of εA1, εA2 and u.

In molecular dynamics simulations the nonequilibrium rate constants for the direct
and reverse reactions (kd and kr respectively) as functions of α can be calculated from the
average time <δt> (α) the system spends in the state characterized by a given α . In order
to see clearly the nonequilibrium effect it is convenient to scale the rate constant for a given
α  by the value calculated from the Arrhenius law using temperature ξ0(α). Such scaled rate
constant for the direct process obtained from simulations (the short dashed line) is
presented in Fig. 4. The thin long dashed lines mark statistical errors of the simulation data
(εA1 = 2 and u = 2.5). Figure 5 shows scaled rate constants of the reverse reaction ksr as a
function of α  for εA1 = 2 and two values of reaction heat (u = 1.5 (long dashed line) and u

Fig. 4.  The rate constant for the direct reaction as a function of α for εA1 = 2 and u = 2.5(εA2 = 4.5) scaled to its
equilibrium value. The short dashed line—MD simulation result; the long dashed lines estimate its statistical
error; the solid line solution of Eqs. (6)–(8).
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= 2.5 (short dashed line)). As expected the influence of nonequilibrium effects on the
reverse reaction is more pronounced.

In our opinion the small discrepancy between simulations and phenomenology is
mainly caused by hot spots of product B which make the system inhomogeneous. Although
the reverse process helps to restore system’s homogeneity for a large reaction heat the
activation energy of the reverse process is high and so the inverse reaction is slow and
inefficient. The rate constant is calculated from MD results assuming that the system is
homogeneous and it should be lower if one considers a higher effective concentration of
B in the spots. Thus it is not surprising that it (see Fig. 5) overestimates theory.

3.  Conclusions

In this paper we presented results of direct measurements of the nonequilibrium
reaction rate constants in an adiabatic system with thermally activated reversible exothermic
reaction (2). The measurements were performed on the basis of molecular dynamics
simulations for the reactive hard spheres. We observe that the rate constant for the direct
reaction is decreased with respect to the corresponding equilibrium value and the decrease
is similar as for the thermoneutral process with the same activation energy. The rate
constant for the reverse reaction is increased by nonequilibrium effects and its value may
be orders of magnitude higher than the corresponding equilibrium value.

Fig. 5.  The rate constant for the reverse reaction as a function of α  for εA1 = 2 and two values of u: u = 1.5 (εA2

= 3.5) and u = 2.5 (εA2 = 4.5). The dashed lines are results of MD simulations, The solid lines come from
solution of Eqs. (6)–(8).
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We compared the results of MD simulations with simple phenomenology which
assumes that the system as a whole and reactant A are described by distribution functions
with time dependent temperatures. The agreement between phenomenology and simulations
is very good so such simple description of nonequilibrium effects may help to predict the
time evolution of many reactive systems. For example the nonequilibrium effects can have
a significant influence on systems exhibiting thermochemical oscillations (GRAY et al.,
1988).
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