
339

Forma, 15, 339–345, 2000Original  Paper

A Good Sampling Method for Guessing Rectangles in [0, 1]2

Masanobu OHTSUKI, Atsushi MINATO and Satoru OZAWA

Division of Applied Synergetics, Graduate School of Science and Engineering, Ibaraki University,
4-12-1 Nakanarusawa, Hitachi 316-8511, Japan

(Received March 28, 2000; Accepted June 12, 2000)

Keywords:  Rectangle, Learning, Guessing

Abstract.  We introduce a good sampling method for guessing the shape of axis parallel
rectangles in [0, 1]2. We will show that with the algorithm based on that good sampling
we can guess the rectangles within worst error O(1/m2/3),where m is the number of sample
points.

1.  Introduction

We consider the following mathematical problem.
“How can we guess efficiently the shape of an unknown axis parallel rectangle in

[0, 1]2 by sampling ?”
The “sampling” means here to draw some points in [0, 1]2 and examine whether each

point is in the unknown rectangle or not. (We suppose that there is a teacher that tells us
the information of “in the rectangle”  or “out of the rectangle”.)

In this paper we introduce a good sampling method for guessing axis parallel
rectangles in [0, 1]2 efficiently, the worst error of which is O(1/m2/3).

This problem is introduced naturally by the “learning theory”.
In the present learning theory, the problem above is interpreted as the problem of

finding a “1-stage” efficient learning algorithm with “membership query” only. See
VALIANT, 1984; LAIRD, 1988; NATARAJAN, 1991 for the present learning theory.

Here we see the background of the present learning theory.
In that theory a “concept” is thought to be expressed by a figure (precisely speaking,

a subset) of some domain and “learning” is identified with “guessing the figure”.
And the model is usually introduced at first. That is, learning domain X and the set of

the concepts to be learned � � 2X are defined and queries are defined that is allowed in the
learning, such as “membership query” “equivalence query” “subset query” etc.

Then the learnability is defined and it is researched whether � is learnable in that sense
or not.

A “stage” of an algorithm consists of drawing sample points and doing a computation
after this sampling, and the number of stages is the number of times a sequence of samples
are drawn without any other computation (see LINIAL et al., 1991 for the stage of an
algorithm).



340 M. OHTSUKI et al.

Hence a 1-stage algorithm is the one that runs in so called “static sampling mode”,
where all the necessary sample points are drawn before any computation is performed.

A general algorithm is more likely to be of multistage type in construction where the
subsequent sampling and computation may exploit the result of the sampling and the
computing in the proceeding stages.

It’s clear that a multi-stage algorithm is more powerful than a 1-stage one. But analysis
of the error of a multi-stage algorithm is more complicated.

In this paper we deal with only 1-stage algorithms.
The learning of rectangles is studied in BLUMER et al. (1989) and NATARAJAN (1991)

in PAC (Probably Approximately Correct)-learning sense or studied in multistage algorithms
model (see BLUMER et al., 1989 and VALIANT, 1989 for PAC-learning, and see OHTSUKI

et al., 1999 for a good 2-stage algorithm and its application).
But it is not studied precisely in the model defined bellow, in which the guessing is

done with a 1-stage algorithm, without any stochastic phenomenon, and with sampling
only, and the error is measured as a function of m, the number of sample points.

Now we give the guessing model more precisely.
Let � be the set of all the axis parallel rectangles in [0, 1]2.
That is �  =  {[a1, a2] × [b1, b2]; 0 ≤ a1 ≤ a2 ≤ 1, 0 ≤ b1 ≤ b2 ≤ 1}.
And let � be an algorithm for guessing c ∈  �.
Guessing a figure of c ∈  � by � is done as follows.
At first c ∈  � is chosen. The algorithm � does not know what c is, but knows that it

is surely a figure in �.
To guess the figure, � can ask the teacher machine � with pointing any point in

[0, 1]2 whether it is in c or not. Such a point is called a “sample point” or simply a “sample”.
For each question,  � gives the guessing algorithm the correct information “1” or “0”,

where “1” means that the point is in the rectangle, and “0” means it is out of the rectangle.
After researching m sample points, � puts out h as a guessed result (h is called a

“hypothesis” in the learning theory).
Of course h does not always correspond to c, and the error between h and c, denoted

by error�(c), is measured by the area of (h�c), where � is the symmetric difference, i.e.
h�c = (h – c) ∪  (c – h).

We call such an algorithm � a “guessing(learning) algorithm for �” or say “�
guesses(learns) �”.

Now we define the error of an algorithm �, and the inevitable error of the set � as
follows.

Definition 1

e�(m) =   sup {error�(c) = area(c��(c, m)); c ∈  � }, where �(c, m) is the guessed result
of the algorithm � when � guesses c with m sample points.

e�(m) = inf {e�(m); � is an algorithm for guessing �}
� (Definition 1)

def

def

def



A Good Sampling Method for Guessing Rectangles in [0, 1]2 341

In the definition above, e�(m) is the error of an algorithm �, and e�(m) is the error that
is inevitable when we guess c in � with any 1-stage algorithm, i.e. it is the error caused by
the difficulty of guessing the shapes of figures in �.

That is, we can measure the difficulty of � by e�(m),and it is clear that e�(m) ≤ e�(m)
for any algorithm �.

It is very difficult to know precisely about e�(m) and it is not the main subject in this
paper.

The main subject in the present paper is to construct an efficient algorithm for guessing
�, the error of which comes near to e�(m).

Now we see an example of sampling for guessing an unknown rectangle in [0, 1]2.
An example is shown in Figs. 1, 2 and 3. The rectangle to be guessed is, for example,

c in Fig. 1 and a guessing algorithm draws up to m sample points like Fig. 2, i.e. it draws
sample points regularly along each axis with equal width. And finally it puts out a guessed
result h in Fig. 3.

In these figures the points “×”’s are the points that are in the rectangle c in Fig. 1, and
“· ”’s are the points out of c.

Let us call this simple guessing algorithm �0.
It can be easily shown that e�0

(m) = O(1/m1/2) that is e�0
(m) ≤ k/m1/2 for some constant

k.
And that means e�(m) = O(1/m1/2). (See GRAHAM et al., 1989 for the notation “O()”.)
We will construct a more efficient algorithm in the next section.

Fig. 1.  An example of a rectangle to be guessed.



342 M. OHTSUKI et al.

2.  A Good Sampling Method for Guessing Rectangles in [0, 1]2

In this section we introduce a good sampling method for guessing rectangles in [0, 1]2,
construct an algorithm based on it, and show that the error of this algorithm is O(1/m2/3).

That means that e�(m) is O(1/m2/3).

Fig. 3. An example of a guessed result.

Fig. 2.  An example of sample points (m = 400).



A Good Sampling Method for Guessing Rectangles in [0, 1]2 343

We show the following theorem, the proof of which includes a good sampling method
and the efficient algorithm based on that sampling.

Theorem 1  e�(m) = O(1/m2/3)

<Proof>
We will prove e�(m) ≤ α/m2/3 (for some constant α), by constructing a good algorithm

for guessing �.
It is an algorithm which draws all the points in the set Spoints(m) (defined below) as

sample points and puts out the minimum rectangle as a guessed one that includes all the
sample points that turned out to be in the unknown rectangle. We call this algorithm �1.

Let q = q(m) be a positive integer, M = M(m) be a positive real number, and d = d(m)
= 1/q(m).

For a positive integer m, define a set of sample points Spointsx(m), Spointsy (m) as
follows.

Spointsx(m)  =  {(x, y);  x = id, y = j/(i + 1)M}, 0 ≤ i ≤ q, 1 ≤ j ≤ (i + 1) M, i, j: integer}

Spointsy(m) = {(x, y); x = j/(i + 1)M, y = id,  0 ≤ i ≤ q,  1 ≤ j ≤ (i + 1)M, i, j: integer}

And define Spoints(m) =  Spointsx(m) ∪  Spointsy(m)
If m ≥ 64, we can take q(m) =  m1/3 , M = (1/2) m1/3 and | Spoints(m) | ≤ 2Mq2 ≤ m.
Some examples of this set Spoints(m) are shown in Fig. 4.

Fig. 4.  Spoints(m)(m = 400, m = 800).

def

def

def



344 M. OHTSUKI et al.

Now we show the following fact (*) at first.
 (*)�  rectangle c � [0, 1]2, c � Spoints(m) = φ ⇒  area(c) ≤ α/m2/3, for some constant

α, and area(c) is the area of the rectangle c.
Let S be S  =  c � Spoints(m). We prove that S = φ ⇒  area(c) ≤ α/m2/3.
Let c = [a1, a2] × [b1, b2] be a rectangle � [0, 1]2 such that c � Spoints(m) = φ.
There exists a non-negative integer i such that id = i/q ≤ (b2 – b1) < (i + 1)d = (i + 1)/

q.
Now two cases should be considered.
(Case 1)[i = 0]
In this case (b2 – b1) < 1/q ≤ 1/M. (We assume m ≥ 8.) Then ∃ j ≥ 1; 1/{(j + 1) M} ≤ (b2

– b1) < 1/(jM). Since (a2 – a1) > jd ⇒  S ≠ φ, so (a2 – a1) ≤ jd, hence (a2 – a1)( b2 – b1) ≤
d/M.

(Case2) [i ≥ 1]
In this case (a2 – a1) < 1/{(i + 1)M}, thus (a2 – a1)( b2 – b_1) < d/M.
By the research of all the cases and the definition of M(m), d(m), it has been shown that

S = φ ⇒  area(c)  ≤ = α/m2/3 for some constant α.
We note here the following fact.
We call h a “consistent (hypothesis) with c on the sample points {z1, z2, ..., zm}” if Ih(zi)

= Ic(zi) for i = 1, 2, ..., m, where Iu() is a characteristic function on some domain u, i.e. Iu(z)
= 1 if z � u, and Iu(z) = 0 if z � u.

For any rectangle c � [0, 1]2, and h � [0, 1]2 that is consistent with c on S = {z1, z2,
..., zm}, c�h can be expressed by the union of up to 4 rectangles that do not include any
points in S.

Then it is clear that (*) above implies that �c � [0, 1]2,  area(c��1(c, m)) ≤ 4α/
m2/3 because �1 is an algorithm which puts out a consistent rectangle with c on Spoints(m).
That means e�1(m) = O(1/m2/3), and hence  e�(m)  =  O(1/m2/3). �

3.  Conclusion

We have introduced a good way of sampling for guessing axis parallel rectangles in
[0, 1]2 to show that e�(m)  =  O(1/m2/3).

Some problems are left to the future research.
1. Extend the way of sampling introduced in this paper to the n-dimensional case.

That is, construct an efficient algorithm for guessing n-dimensional rectangles in [0, 1]n.
2. Estimate e�(m) more sharply. That is, construct a more efficient algorithm than

the algorithm introduced in this paper.

REFERENCES

BLUMER, A., EHRENFEUCHT, A., HAUSSLER, D., MANFRED, K. and WARMUTH, K. (1989) Learnability and the
Vapnik-Chervonenkis dimension, Journal of the ACM, 36, No. 4, pp. 929–965.

GRAHAM, R. L., KNUTH, D. E. and PATASHNIK, O. (1989) Concrete Mathematics, Addison-Wesley Publishing
Company, pp. 407–418.

LAIRD, P. D. (1988) Learning from Good and Bad Data, Kluwer Academic Publishers, Boston, pp. 1–213.
LINIAL, L., MANSOUR, Y. and RIVEST, R. L. (1991) Results on learnability and the Vapnik-Chervonenkis

def



A Good Sampling Method for Guessing Rectangles in [0, 1]2 345

dimension, Information and Computation 90, Academic Press, pp. 33–49.
NATARAJAN, B. (1991) Machine Learning, Morgan Kaufmann Publishers, Inc. San Mateo, California, pp. 1–217.
OHTSUKI, M., MINATO, A. and OZAWA, S. (1999) Mathematical study of conceptualization in n-dimensional

space, Forma, 14, 303–307.
VALIANT, L. G. (1984) A theory of the learnable, Communications of the ACM, 27, No. 11, 1134–1142.


