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Abstract.  Dense packing of equal circles on a sphere is investigated. A systematic
algorithm, the Minimum-Zenith Method (MZM), is proposed in this report. Started from
a proper initial configuration, a circle is sequentially packed one by one so that the zenith
angle is as small as possible. It is necessary to fix the size of the circle and some initial
configuration. Circle configurations we examined have three- to six-fold rotational
symmetry. The densest one among them for a specified circle number is the desired
configuration of the method. All the cases up to N = 150 are studied in this paper. The
obtained packing densities are equal to or slightly smaller than those by other methods
(exact solutions, Monte-Carlo method, etc.) in spite of simplicity of the method.

1.  Introduction

How do we locate non-overlapping N equal circles on a sphere so as to make the size
of the circles as large as possible? It is equivalent to the problem of maximizing the
minimum distance between N points on a sphere. It is called the Tammes problem after a
botanist who studied the distribution of hollows on the surface of spherical pollen grain
(TAMMES, 1930).

Many approaches to find the circle configuration and resulting packing density were
performed to the Tammes problem. Mathematically proved solutions were found for N =
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 24. The solutions for N = 2, 3, 4, 5, 6, 7, 8 and 9 were
derived and proved by Schütte and Van Der Waerden (SCHÜTTE and VAN DER WAERDEN,
1951; VAN DER WAERDEN, 1952). DANZER (1963) proved the conjectures for N = 10 and
11. FEJES TÓTH (1943) proved the conjecture for N = 12. ROBINSON (1961) proved the
conjecture for N = 24.

Goldberg presented putative solutions for some numbers under N = 42 by the axially
symmetric packing (GOLDBERG, 1967, 1969). He investigated arrangements which have
three- to five-fold symmetry about only one axis. Tarnai and Gáspár studied the multi-
symmetric arrangements which have tetrahedral, octahedral and icosahedral rotational
symmetry and used same dense arrangements on each face of the polyhedra (TARNAI, 1984;
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TARNAI and GÁSPÁR, 1987; GÁSPÁR, 1989).
Recently, some people applied a Monte-Carlo method by introducing the repulsive

interaction. KOTTWITZ (1991) calculated the arrangement up to 90 circles and HARDIN et
al. (1997) pushed it up to 130. Though their results are quite good, there is no mathematical
proof that each of their results yields the highest packing density.

We propose a new algorithm, the Minimum-Zenith method (MZM), for the packing
problem on a spherical surface. The method is that started from a point whose zenith angle
is zero, the circles are packed sequentially with the zenith angle as small as possible. The
method does not always give currently known best configurations. However the MZM has
advantages that the algorithm is simple and the time for calculation is short. Circle
configurations we examined have three- to six-fold rotational symmetry. The total number
of circles calculated is up to 150. The general tendency of the packing density by the MZM
is discussed.

2.  Method

2.1.  The minimum-zenith method (MZM)
In the MZM, the circles are sequentially packed onto the space whose zenith angle is

minimum. The detailed procedure of the packing is as follows. (The words North Pole and
South Pole are introduced for the convenience of the explanation; the zenith angle is zero
on the North Pole and π [rad] on the South Pole. The word point refers to the center of the
spherical cap*.)

1. Fix the size of the circle and give some points as the initial configuration around
the North Pole.

2. Search for several points which has the possibility to be packed by a new circle.
3. Put the new circle on a point whose zenith angle is the minimum among all the

points found in step 2.
4. Repeat step 2 and step 3.
5. Stop the packing if there is no vacancy to add one more circle in the vicinity of

the South Pole.
Location of new points in step 2 are calculated by using the following equation (Eq.

(1)). When we know the coordinates of two points (A and B) on a sphere and the size
(angular diameter d [rad]) of the circle, we can calculate a new point (C) which is at d [rad]
from both two points. If we use a unit sphere, Eq. (1) can be confirmed. Derivation of Eq.
(1) is given in Appendix A.
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*A spherical cap is the inside of a circumference of the circle on the spherical surface.
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where A, B and C are unit vectors and l is the angular distance between A and B.
Our interest is a maximal d which produces the densest structure of N circles by the

MZM. We include the MZM in bisection method in order to find such a dmax. In the
bisection method, calculation begins with d1 and d2 which satisfy d1 < dmax and d2 > dmax,
and d3 = (d1 + d2)/2 takes the place of d1 if the MZM with d3 produces a structure not less
than N, otherwise d2 is replaced by d3. An arbitrary precision of dmax is attained by repeating
this procedure. Appropriate d1 and d2 for each N are found by a preliminary calculation, in
which the MZM is carried out for roughly changing d.

2.2.  Further assumptions
In the MZM, there is no constraint about the initial configuration. So any initial

configuration is possible if only the condition of non-overlapping among circles is
satisfied. The examined structures are restricted to three- to six-fold rotational symmetry
in the present paper. We use 7 initial configurations which have such symmetry and they
are shown in Fig. 1.

Each resultant structure also has the same symmetry as its initial configuration. The
axis of rotation is the earth’s axis. Though some structures in Sec. 3 have imperfect
rotational symmetry, they are made from complete symmetrical structures by removing a
few circles.

As concerns n-fold rotational symmetry, N is restricted to the integer of the types: nk,
nk + 1, and nk + 2 (k is a natural number), and calculation is not carried out for other N. It
means that the finish of packing around the South Pole is restricted to two types which have
n-fold rotational symmetry. For example, if the initial configuration is 03-type, the finish
is either 03- or 13-type.

Fig. 1.  Initial configurations. The solid circle is the North Pole. Concerning 16-type, the center circle does not
contact with other 6 circles because of the curvature of the spherical surface.
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*The coordinates data of circles are omitted.

3.  Results

Calculation of d and the coordinates* of all circles were done for every initial
configuration within N = 3–150. All values of d, which was rounded off to the seventh
decimal places, are in Tables 1–3. The execution time for N = 150 of 03-type by a SONY
PCG-Z505JX (with Pentium II 400 MHz) was 6 minutes. The program for the MZM was
written in Mathematica Version 4.

About each N, some diameters made from different initial configurations are given in
Tables 1–3. The biggest value in them is the candidacy for the final result. The final value
of d should decrease monotonously when N increases. However the biggest value for N =
29 in Table 1 is d = 38.2028692 and the biggest value for N = 30 is d = 38.5873360, which
are contrary to the monotonous decease. A structure made by removing one circle from the
structure of N = 30 is denser than the structure of N = 29. Therefore d = 38.5873360
calculated for N = 30 is adopted as the final result for N = 29. Such revises are done for some
other numbers, and we get Tables 4–6 as the final result.

The biggest value of d, the packing density D of its structure and the type of the initial
configuration are in Tables 4–6. The packing density is defined by D = (N/2)(1 – cos (d/2)),
which is derived in Appendix B. Tables 4–6 also have d and D of the accomplished
solutions. The word “accomplished solution” means the exact solution, the conjectured
solution or the currently best solution. Numerical values of d of the accomplished solutions
are cited from HARDIN et al. (1997). Some diameters in Tables 4–6 have an asterisk(*),
where the revises mentioned in last paragraph were done.

Tables 7–9 are supplementary Tables to Tables 4–6. In the third column of Tables 7–
9, numbers of circles on the same zenith angle are written in the braces such as {···},
numbers of circles Nnorth and Nsouth in the Northern and the Southern hemisphere are in the
parenthesis such as (Nnorth/Nsouth), and a note where necessary.

Both the first and the last number in the braces are 0 or 1, which shows respectively
the non-existence or the existence of a circle at the North Pole and the South Pole. The
numbers in the braces are divided into two parts by a slash mark. The numbers of the left
part are the circles in the Northern hemisphere and the right part are those in the Southern
hemisphere. It often happens that a circle is crossed by the equator and exists on both
hemisphere. For such cases, the center of the spherical cap is the criterion to judge which
hemisphere the circle belongs. Sometimes the center of the spherical cap is just on the
equator. On such cases, the numbers of the circle on the equator are sandwiched between
two slash marks. Generally, the numbers in the braces correspond to the degree of the
rotational symmetry of the initial configuration except for both ends in the braces. For
example, the braces for 04-type and 14-type are lined with 4 except for both ends. There
is a possibility that a multiple of the degree of the rotational symmetry comes in the brace.
Such cases are seen for 13-type, where 6, a multiple of 3 occasionally appears.

In the fourth column of Tables 7–9, Dnorth and Dsouth, the packing density in the
Northern and the Southern hemisphere are shown. The left is the Northern density, the right
is the Southern density and they are distinguished by a slash mark. Derivation of equations
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Table 1.  Results of calculation of the MZM (N: 1–50).

The diameters were calculated for 7 initial configurations by using bisection method and were rounded off
to the seventh decimal places.
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Table 2.  Results of calculation of the MZM (N: 51–100).
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Table 3.  Results of calculation of the MZM (N: 101–150).
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Table 4.  The results of the MZM and the accomplished solutions (N: 1–50).

The word “accomplished solution” means the exact solution, the conjectured solution or the finest solution
at the present time. Numerical values of the accompolished solutions is cited from HARDIN et al. (1997).
Numerical values of the MZM are the best values in Tables 1–3.
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Table 5.  The results of the MZM and the accomplished solutions (N: 51–100).
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Table 6.  The results of the MZM and the accomplished solutions (N: 101–150).

The accomplished solutions are up to 130 (HARDIN et al., 1997).



Dense Packing of Circles on a Sphere 357

Table 7.  Supplementary table to Table 4 (N: 1–50).

In the third column of Tables 7–9, numbers of circles on the same zenith angle are written in the braces,
numbers of circles in the Northern and the Southern hemisphere are in the parenthesis, and a note where
necessary. In the fourth column of Tables 7–9, the packing density in the Northern and the Southern hemisphere
are shown. See Sec. 3 for details.
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Table 8.  Supplementary table to Table 5 (N: 51–100).

for the density on the hemisphere is given in Appendix C. Each density was rounded off to
the third decimal places.

4.  Discussion

For N = 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 24, 31, 38, 42, 48 and 50, the MZM gave
the same d-value as the best value by HARDIN et al. (1997). Tables 4–6 show that the MZM
yields packing densities equal to or slightly smaller than those of other methods (exact
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Table 9.  Supplementary table to Table 6 (N: 101–150).

solutions, Monte-Carlo method, etc.) in spite of the simplicity of our algorithm.
Structures of N = 3k + 1 are made of both 03- and 13-type initial configurations.

Structures of N = 4k + 1 are made of 04- and 14-type and structures of N = 5k + 1 are made
of 05- and 15-type. Both structures have the same N and the same rotational symmetry, as
an example, the structure of N = 13 in 03-type and the structure of N = 13 in 13-type. They
are generally different structures and occasionally congruent, which are found in Tables 1–
3. For example, most of the structures of N = 3k + 1 made of 03- and 13-type are different
each other, except for congruent cases: N = 4, 7, 10. This fact suggests a characteristic that
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the MZM has a difference of the packing efficiency between the Northern and the Southern
hemisphere. Therefore we note Nnorth, Nsouth, Dnorth, and Dsouth.

In Tables 7–9, the Dnorth < Dsouth are found for only N = 4, 7, 10, 13, 26 and 51 in spite
of the cases of Nnorth < Nsouth are found for N = 4, 7, 10, 11, 13, 21, 25, 26, 45, 49, 51, 53,
57, 68, 79, 94, 101, 113, 116, 117 and 137. Thus, Dnorth and Dsouth cannot be expected by
Nnorth and Nsouth. The cases Dnorth > Dsouth when Nnorth < Nsouth are not mysterious but
possible if the centers of some circles which are counted as Nsouth are close to the equator.
Anyway, it is suggested by Tables 7–9 that there is a tendency that Dnorth is larger than
Dsouth. Though the tendency is strong, the explicit reason is hard to state. The cases of Dnorth
= Dsouth are found on N = 1, 2, 3, 6, 8, 9, 12, 14, 16, 17, 18, 20, 22, 24, 27, 32, 38, 42, 48,
50, 52, 60, 62, 74 and 98. These structures have the symmetry of reflection or the symmetry
of rotatory reflection and the equatorial plane becomes the reflection surface or the rotatory
reflection surface of them.

Which kind of the rotational symmetry gives the more efficient packing than any other
types? Judging from Tables 4–6, there seems to be no special type which is clearly efficient.
It is suggested that even if the local packing density around the initial configuration is
small, the whole packing density is not always small. For example, 03- and 13-type
obviously have the bigger local densities on around the North Pole than 04- and 14-type,
but the appearances of 04- and 14-type in Tables 4–6 are not few.

One of the merits of using the symmetrical initial configuration is to make calculation
time short. Authors examined symmetrical arrangements as the first target of the MZM to
check its validity. The comparison between symmetrical arrangements and asymmetrical
ones is a further problem.

The authors are grateful to Y. Nakashima for his continuous encouragement, his precise
comments and corrections of English. The authors wish also to thank T. Hirata, D. Nagy, Y.
Watanabe, M. Tanemura, W. Sasaki, an anonymous reviewer, and other people in our group for their
beneficial comments and their encouragement.

Fig. 2.  A packing structure of N = 149, started from 04-type initial configuration. (The northern hemisphere.)
Fig. 3.  A packing structure of N = 150, started from 05-type initial configuration. (The northern hemisphere.)

Fig. 3.Fig. 2.
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APPENDIX A:  The Position of a Circle Which is in Contact with Given Two Circles

Derivation of Eq. (1) is given here. The point C is on the perpendicular surface at
midpoint of A and B. So C is expressed as a linear combination with (A + B) and (A × B):

C = k
1
 (A + B) + k

2
 (A × B). (2)

Two letters k1 and k2 are constant coefficients of the linear combination and they are
decided as follows. By taking inner products of A and the both sides of Eq. (2), we have

(C, A) = k
1
 (1 + (B, A)). (3)
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APPENDIX B:  The Area of a Circle and the Packing Density of Circles

The packing density is defined with the ratio of the area of all circles to the whole area
of a spherical surface. The area of a circle is calculated as the area of a spherical cap. On
the unit sphere, the area S of a circle having the radius r [rad] is

S r dr r
r

= ′ ′ = −( )∫2 2 1 6
0

π πsin cos . ( )

Therefore, if there are non-overlapping N circles having the diameter d (=2r) on the unit
sphere, the packing density D is
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APPENDIX C:  Division of a Circle by a Great Circle

Suppose that a circle and a great circle of a unit sphere cross each other. The center of
the circle of radius r is A and two cross points, which are the both ends of a spherical chord,
are B and C. The circle is divided into two segments S1 and S2 (Fig. 5a). The major part S1,
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in which the center lies, consists of a spherical sector K1 and a spherical triangle K2 (Fig.
5b). Let us derive the expression of the area of the segment.

At first, three fundamental formulas: spherical cosine theorem Eq. (8), area P of a
spherical triangle Eq. (9), and the spherical version of Pythagorean theorem Eq. (10) are
introduced, where a, b, and c are the edge length expressed by the central angle, and α, β,
and γ are the inner angle (Fig. 4).

cos c = cos a cos b + sin a sin b cos γ, (8)

P = α + β + γ – π, (9)

cos c = cos a cos b. (10)

Equation (11) for a spherical right triangle in Fig. 5c is given by Eq. (10), where a =
f, b = e, c = r = d/2.

cos(d/2) = cos e cos f. (11)

By using Eq. (8), we have
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By using Eq. (6), we have
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Fig. 4. Two spherical triangles.
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Fig. 5. Division of a spherical cap by a great circle.

= −( ) − ( )( )2 2 1 2 14π g dcos / . ( )

And by Eq. (9), we have

K
2
 = 2g + h + h – π (15)

= 2 (g + h – π/2). (16)

Hence

S
1
 = K

1
 + K

2
 = π + 2h + 2 (g – π) cos(d/2), (17)

S
2
 = 2π (1 – cos(d/2)) – S

1
 = π – 2h – 2g cos(d/2). (18)

The net packing densities on the Northern hemisphere and the Southern hemisphere
can be calculated with Eqs. (17) and (18), where of course a great circle is the equator.
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