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Abstract. A model analysis is made for a mechanism of formation of population
distributionin casewheretravel timesbetween two pointsare assumed to begivenin two-
dimensional space. Two factors are taken into consideration; one is the tendency that
population gathers to the regions from which an average traveling time to other regions
is smaller, another is the tendency to avoid the regions with high population density.
Based upon thismodel population distributions were computed numerically in both cases
without railroad and with railroad of various shapes.

1. Introduction

Asoperational research problemstherearemany analysestofind optimumdistributions
of servicepointsor optimum traffic networks (Ok ABE and Suzuk1, 1992). Inthese analyses
population densities are assumed to be given, and mathematical frameworks have been
constructed based on this assumption. However, in designing social structures such as
service points or traffic networks, the population density is often formed after their
constructions and the estimation of amenity of the region can be first estimated after
formation of the population density. Therefore, amathematical tool to determinepopulation
density is wanted.

Distributions of the population in real cities and suburbs are not simple, but as a
general tendency it isconcentrated at regions of the city to which people can accesseasily.
Clark’slaw (CLARK, 1967) isknown as amodel to describe such tendency. It assumes that
the density p decreases exponentially with the distance r from the center.

p=Ae®, 0.1<b<15km>

This model, however, seems to be based on empirical observations and does not describe
the mechanism of the formation of the distribution. In fact, many factors may exist to form
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the distribution. People will gather at places which can be accessed easily. In general, the
shorter the distanceis, the easier isto access. But if sometraffic facilitieslike railroad are
available, thesituationwill bedifferent. Topographical, and even climatol ogical conditions
must be also taken into account. Moreover, people also have tendency to avoid crowded
regions with high population density.

Now, it is necessary to establish a schematised but concrete model to describe the
process of formation of the population distribution taking the traffic network into
consideration. In this regard, we propose such a model in this paper.

A method of quantitative estimation of aregion isproposed by KosHIzukA (1997) by
introducing a concept of inner distance distribution. This method is suggestive for our
purpose.

Inthe present model it is assumed that aregion in the spaceis evaluated as a place for
residence by afunction which isthe sum of two terms, the former of which correspondsto
the uncomfortableness caused by the difficulty of accessibility, while the latter to the
uncomfortableness caused by high density of the population. The total uncomfortableness
in the space is evaluated by the integration of the uncomfortableness which each person
feels.

We assume further that the density of the distribution is so determined that the total
uncomfortableness is minimized (or the total amenity is maximized) under the condition
that the total population is fixed. Since this problem can be reduced to an equivalent
problem in physics of energy minimization, analogous treatment is possible.

2. Model of Formation of Population Distribution

In order to construct the model we set up the following assumptions.

(i) Thespaceistwo-dimensional, and the boundary isgiven. Each point in the space
is denoted by the coordinates (x,y).

(i) Total population N is given, namely,

N =[p(xy)ds (1)

where p(x,y) is the population density at the point (x,y) and dS = dxdy.

(iii) We introduce here an uncomfortableness function (x,y) at each point in the
space which a single person feels. As noted above the total uncomfortableness E of the
space is assumed to be expressed by the following integral:

E = [[w(xy)p(x,y)dxdy. (2)

Uncomfortableness function ((x,y) is assumed to be composed of two factors, oneis an
average accesstimeto other regionsin the space, and another a high density of population.
It isnatural to consider that isan increasing functions of the average accesstime and the
local population density. Since the dependences of ¢ on these factors are not clarified
enough, it is assumed here that (¢ is alinear function of these factors, i.e.



Model Analysis for Formation of Population Distribution 49

Wxy) = U(xy) + bp(x.y), ©)

where b is a constant and U(x,y) is a term proportional to average access time to other
regions and its concrete expression is given later.

At this stage we can derive a general expression for the density p by applying a
variational principle to E. By substituting Eqg. (3) into Eg. (2), we have

E= J’U(x, y)p(x, y)dxdy + bf p(x, y)? dxdy. (4)
The population distribution p is determined so that the value of E is minimized under the
condition (1). This problem is solved by minimizing | = E — AN, where A isaLagrange’s

coefficient. By the use of atechnique of variational method we calculate the variation dl,
and put it equal to O, i.e.

a :J'U(Spjs+2bj po@s - /\J' o@s =0, (5)
which yields to
U+2bp-A=0, p=(A-U)/2b. (6)

The unknown parameter A is determined by substituting Eq. (6) into Eq. (1), as
A=< (26N + [Uds) = 20(p) +(U) (7)
SN ’
where

S=[ds (total area), (p)=N/S (average population density),
(U)=[uds/s (average value of convenience).

Then, substituting Eq. (7) into Eq. (6), we obtain
p = [p+ (WO U)/2b. (8)

Now, we define the function U(x,y) by introducing the following assumption:

(iv) ThetravelingtimeT(P,P') betweentwo arbitrary points P(x,y) and P'(x',y') inthe
spaceisgiven, and U(x,y) = U(P) isproportional tothe averagevalue of traveling timefrom
the corresponding point P to other points P’ and the number of occasions to go to a point
is proportional to the fraction of population of the point P, i.e. p(P')/N. Then, we can
express U and its average as
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U(x.y) =%IT(P, P)p(P)dS, (U) :NiSHT(P, P)p(P )dsds (9)

Finally, by substituting Egs. (7) and (9) into Eq. (6), we obtain the following integral
equation for p(P):

o(P) = (p) +ﬁ %J’J’T(P, P)o(P)dS dS- [T(P,P)p(P )dS % (10)

Notethat this equation containsan unknown parameter a/(2bN), whichisaratio of the
effect of the traveling convenience to the effect of high density of inhabitants. This
parameter is looked upon as an adjustable parameter.

3. Numerical Solutions in Some Cases

3.1. Method of numerical computation

Since it is difficult to obtain analytical solutions of Eq. (10), we try to solve it
numerically. We express the two-dimensional space by two-dimensional square gridswith
uniform intervals, where the area of the grid is denoted by AS(see Fig. 1). We replace the

- o W A G O N X @

2 34 56 78 910 11 12 13 14 15 16 17 18 19 20 21
(3

Fig. 1. Thegrid system applied in thisanalysis. In cases Il and 11l shown in Table 1 the number of grid points
are more.
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integral equation (10) by aset of simultaneous al gebraic equationsfor population densities
at the grid points p;, p,, ..., PN, where N, is the total number of grid points. This

manipulation is straight forward and its process is abreviated here. The result is given
below.

APyt Appy +oo-+ A Py, =(p)
Pory + Aoy ++- + Aoy Py, =(P)

AN, 11+ Ay2P2 + o+ Ay, Py =(P) (11)

where

Ap=1-0) TAL), A,=qT(L2)-q, > T(2.L),

L#1 L£2
Ay, =gT(L Ng)—quZNT(Ng,L)
Ay = Q1T(2’ 1) ) Lle(:L L)’ Ay =1-0q, LZZT(Z L)’
e Py :qlT(Z, Ng)—quZNT(Ng,L)

9

Ay, = %T(Ng’l) —0 ) T(LL), An,2 = Q1T(Ngaz) 0y ) T(2.L),

L#£1 L#£2
o Agn, 1= 3 T(Ng L) (12)
L#N,
2
qlchS::\:l_S, qzzc(ASS) :%S, C:ﬁ_ (13)
[¢] 9

Here, we must give an expression of traveling time between two points P(x,y), P'(x',y"),
T(P.P) =T(xy:Xy') = (k=X + ly =y /o, (14)

wherev,isthewalking velocity. If arailroad isconstructed in theregion, thetraveling time
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between two points P(x,y) and P'(x',y') can be expressed as follows, by partly using the
railroad:

T(P;P") = min(T(P,A) + L(A,B)/v + T(B,P")), (15)

where A and B are the points of stations, L(A,B) isadistance between A and B, and visthe
trainvelocity. The symbol “min” meansthat we choose the minimum valuefor all possible
combinations of (A,B).

Procedure of numerical solution is as follows. First, we give the railroad planning
(location of stations and distances between any two stations). Second, we compute the
traveling time T(P,P') between two arbitrary points, by the use of Eq. (15). Third, we solve
the simultaneous algebraic equations (11) by the Gauss-Jordan method.

Values of parameters c (psychological parameter), the total area S, Ny (=SAS), vo, v
must be specified before computation. Wemust fix appropriate val ues of parameters so that
resulting values of p(P) might not be negative. Wetreated 14 casesaslistedin Table 1. We
fix N=441for all casesexcept Il and I11, and grid distanceisfixed at 1 for all cases hence
AS= 1. Shapes of theregion is assumed to be asquare with side length 21, hence N, = 441,
except for rectangular cases 11 (42 x 21, Ny = 882) and 111 (63 x 21, Ny = 1323). The mean
population density isfixed unity for all cases. Wefixeda= 1, b =5, hence ¢ = 0.0002267
in the all cases except |1 and I11. The walking and train velocities v, and v are fixed as v,
=landv=10in all cases.

3.2. Results of numerical solutions

Figures 2(a) and (b) show the two-dimensional and three-dimensional contour map of
population distribution in case | respectively. The contours are nearly concentric circles,
where the center of the region has the highest density, asis expected. It isremarkable that
the contours near the periphery are circular in spite of the square boundary.

Table 1. Cases treated in numerical solution.

Case Number of stations N c E (EN) Figure
| none 441 0.0002267 7994.77 18.1287 Hgs. 2(a) and (b)
I none 882 0.0000708  24368.82  27.6290 Fg. 3(a)

i none 1323 0.0000472  43636.07 32.9827 Hg. 3(b)

vV 2 441 00002267  7566.15 17.1568 Fig. 4(a)

\% 3 441 0.0002267 7133.97 16.1768 Hg. 4(b)

VI 4 441 0.0002267 6881.71 15.6048 Hg. 4(c)

VIl 5 441 0.0002267 6800.43 154204 Fg. 4(d)
VI 5 441 0.0002267 6569.43 14.8967 Hg. 5(a)

IX 5 441 0.0002267 6507.92 14.7572  Hg. 5(b)

X 5 441 0.0002267 6531.74  14.8112 Fg.5(c)

X1 5 441 0.0002267 6852.35 15.5382 Hg. 5(d)
X1l 5 441 0.0002267 654450  14.8401 Fg.5(e)
XI 5 441 0.0002267 6586.68  14.9358 Hg. 5(f)
XIV 4 441 00002267  6900.93  15.6483 Fig. 5(q)
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Figure 2(c) shows the distribution of traveling time from representative three points
(indicated inthefigure) inthiscase. Thisfigure showsthat the central point (11,11) ismost
convenient as to the traveling time.

Figures 3(a) and (b) show the contour maps of population density in cases |l and I11,
which have shapesof concentric ellipses. Theresultsshownin Figs. 2 and 3 seem to suggest
that the shapes of contours depend much on the global nature of the regions, whether they
are elongated or not.

In the rightmost column in the Table 1 the value of (E/N) is shown, because for the
comparison of uncomfortableness of regions with different populations the value of
uncomfortableness per person is more important than the value of E itself. By the
comparison of theresultsof casesl, Il and |11 we can see (E/N) hasthelowest valuein case
| with square region. Thisresult is convincing since the traveling time isimportant in the
present analysis.

Figures 4(a)—(d) show the results in cases with straight railroad in cases IV-VII. As
is expected the population densities adjacent to the railroad are high. The traveling time
distribution in case VIl is shown in Fig. 4(e). By comparing Fig. 2(c) and 4(e) we can see
that the curves havethe peaksat the smaller traveling timein case with railroad thanin case

Fig. 3. Two-dimensional contour maps of population density in the rectangular cases. (a) Casell, (b) Caselll.
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Fig. 6. Dependence of E to the vertical position of the center of therailroad in case | X. (a) Position of the center
of the railroad. (b) Dependence of Etoz=j, — 11.

without railroad. The railroad length dependence of the total energy E in cases | and IV—
VIl areshownin Fig. 4(f). We can see E decreases (amenity increases) monotonically with
theincrease of therailroad length, asis expected. Note that degree of the decrease of E is
not so remarkable when the railroad length is larger than 15, which suggests that the
extension of therailroad near the boundary of the spaceis not so effective for the increase
of the convenience of the whole space.

Figures 5(a)—(g) show the results of case VII1-XIV, inwhich length of therailroad is
20 and the center of the mass of therailroad isfixed at the center of the space, i.e. (11,11).
The population density are high in the regions along therailroad also in these cases, which
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issimilar tendenciestothat of Fig. 4 (cases|V-VII1), however they |oose spatial symmetry.
Among these seven cases the total uncomfortableness E takes the least value in case | X.
This fact suggests that case | X is the best choice for railroad shape with length 20.

Thetotal uncomfortablenessE variesalsoif the position of therailroad isshifted with
itsshape unchanged. Therefore, weexamined the effect of thevertical position of thecenter
of therailroad. The position is defined by the value of j, for the station A (see Fig. 6(a)).
We can see from Fig. 6(b) that E depends much on the distance between the station A and
the center of thewhole space C,, z=j,— 11, and that E takesthe lowest value at z= 2. Note
that E takes the minimum values when the stations are located at the grid points.

4. Conclusions and Discussions

In this paper we have shown that the proposed mathematical method with variational
principleis effectivein estimating total uncomfortableness of the space on the analogy of
the physical concept of energy. The method would also give a guideline in transportation
network. Details of conclusions derived from the above results are listed below.

(1) Inthecasewithout railroad the popul ation density contoursare nearly concentric
circles.

(2) The railroad attracts the population density towards itself and reduces the
uncomfortableness of the region.

(3) The total uncomfortableness decreases with the length of the railroad.

(4) If the total length of railroad is fixed, the best planning of the railroad is
determined by comparing the value of total uncomfortableness.

Some comments on the above conclusions must be added here. First, the L1 distance
D between thetwo pointsisemployed in the present analysis. We havetried to estimate the
population densities by the use of L2 distance (Euclidean distance) in some cases, but
patterns of population distribution are almost the same as the present results.

Second, wefixed a =1, b =5, hence c = 0.0002267 in the all cases except Il and IIl,
and a = 1, b = 8, hence c = 0.0000708, 0.0000472 in cases |l and I1l. These values are
determined by trial and error so that the values of population density of all the points are
positive. If we employ some smaller value of ¢ than that of present analysis, population
densitiesin some pointswill become negative, which should be prohibited in thisanalysis.

Third, in the present analysis we have assumed a relatively simple situation, i.e. the
space is uniform and the convenience of a point is determined only by the traveling time,
and the space has one railroad line. Algorithm of numerical computation, allowing
situations beyond these constraints will be designed in the future.

Fourth, in the present analysis the railroad planning is given at first and population
density isgiven after that. However in the actual social development railroads are planned
with the increase of the population. The present analysis could be extended to that more
realistic situation, which is a subject of future work.

REFERENCES

CLARK, C. (1967) Population Growth and Land Use, Macmillan.

KOsHIZUKA, T. (1997) Analysis of road networks based on transportation, Bull. of the Soc. Sci. Form, 12, 22—
23 (in Japanese).

OKABE, A. and Suzukl, A. (1992) Mathematics of Optimum Configuration, Asakura Syoten (in Japanese).



