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Abstract.  An upward tendency of air temperature has been pointed out by many researches
and it can be also suggested with statistical tests. However, these tests are not enough to
elucidate a system of the air temperature variation. We obtained conditions on the
variation for their time averaged potentials were constructed with histograms on time
series data. We propose a form on the system that gives a physical interpretation with the
potentials. We analyzed time series data of air temperature variation at Nagoya. We can
observe that a new peak of the histogram appears on higher temperature as time passes,
and we can assume the same time variation of form on the time-averaged potentials. This
variation can be explained by a hypothesis that the temperature variation system has a
physical mechanism in accordance with a delay convention on one-dimensional cut off of
wedge catastrophe.

1.  Introduction

In recent years, an upward tendency of air temperature has been pointed out and many
researches have reported concerning with global warming (IPCC, 1995). However, little is
known about these problems, for example, whether the cause is artificial or natural.

Time series of year-averaged air temperature at Nagoya (at 35°10′  N, 136°58′  E; Fig.
1) seem to be upward tendency (Fig. 2). We can use some statistical tests to verify a
tendency of the time series. One is a test on significance of a regression coefficient
(inclination of a regression line). The coefficient calculated by the least square method is
larger than zero and a null hypothesis that the coefficient is zero is rejected with significant
level as 0.05 (Appendix A). Then, we can suggest that the coefficient is not zero and the
temperature changes with statistical significance.

We also used Welch’s test that verifies difference of mean values of two populations.
The populations are values on year-averaged temperature from 1900 to 1949 and from 1950
to 1999. A null hypothesis that the mean values of the populations are equal is rejected with
a significant level as 0.05 (SHIMIZU and TAKADA, 2000; Appendix B). In other words, we
can suggest that the mean values of the year-averaged temperature have changed by
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Welch’s test. This result is consistent with the test on significance of the regression
coefficient.

We were able to show upward tendency of an air temperature variation with these
statistical tests. However, these statistical tests cannot give the physical meaning on a

Fig. 1.  Location of Nagoya (shown as a cross mark).

Fig. 2.  Time series of year-averaged temperature at Nagoya from 1900 to 1999 and its regression line calculated
by least-squared method.
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system of air temperature that controls the phenomena. Purposes of this study is to propose
verification of the temperature variation with a theory that describes correspondence
between “form of a histogram” and “form of the potential”, and to advance a new
interpretation for physical explanation of the air temperature variation.

Fig. 3.  Time series of month-averaged temperature at Nagoya from 1900 to 1999 (a: January to June, b: July
to December).
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2.  Form of Histogram of Air Temperature

We construct a theory of air temperature variation with a process that generates time
series of air temperature. Our theory is based on the stochastic process theory. The time
series are composed with a view of the stochastic analysis.

2.1.  Transformation of the time series data
We use time series data of air temperature from 1900 to 1999 at Nagoya meteorological

observatory (possessed by Japan meteorological agency). The form of histogram is
important for stochastic analysis. It is difficult to extract characters of the time series with
form of the histogram as described in the followings because some daily and yearly
periodicities are admitted. Therefore, the time series are transformed to the time series of
year-averaged temperature (Fig. 2) and the time series of month-averaged temperature on
every year (Figs. 3a and 3b);

{x-th month in 1900, x-th month in 1901, ..., x-th month in 1999} (x = 1, 2, ..., 12).

The extent of averages for the month-averaged temperature is one month (from 28 days to

(a)

Fig. 4.  Time variation of histogram of the year-averaged temperature (a: An extent of histogram is 50 years,
b: An extent of histogram is 20 years).
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31 days). The extent is determined for simplify of calculations, and we should notice that
physical significance of the extent have been not given.

2.2.  Histogram of air temperature and the time variation
Histogram is a graph that shows classes of values of the time series on a horizontal axis

and each frequency on a vertical axis. A time variation of the year-averaged temperature
(Fig. 2) is shown as Figs. 4a and 4b with 3-dimensional histogram where the x-, y- and z-
axis mean the class of temperature, the extent of the histogram and frequency. The class
interval of the histogram is 0.5 degrees and the extent of histogram is 50 years on Fig. 4a
and 20 years on Fig. 4b. We can clarify the time variation of the histogram with use of the
y-axis of 3-dimensional graph.

We can admit a common type of a character on the time variation of a form of the
histogram in Figs. 4a and 4b. There is one peak of the histograms and it is especially similar
to a normal distribution except for 1950–1999 on Fig. 4a and 1980–1999 on Fig. 4b.

The peak gradually moves to higher temperature for many histograms. Also, we
should notice that a new peak of histograms appears at higher temperature in the extent of

(b)

Fig. 4.  (continued).
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1950–1999 on Fig. 4a and 1980–1999 on Fig. 4b. The same type of the time variation of
the histograms is admitted on each month-averaged temperature at intervals of 1 degree.
Figure 5a is the histogram of January and it has a typical type of the time variation.
However, this variation is not admitted only in the month-averaged temperature on July
(Fig. 5b).

3.  Theory on Correspondence between Form of Probability Density Function and Potential

If we can obtain a form of a time-averaged potential on the mathematical model that
describes the process of air temperature variations, the following points are expected.

• We can assume a system that describes air temperature variation as a dynamical
equilibrium and a structural steady state.

• We will compose a mathematical model as a statistical dynamical equation that
is obtained as continuous limit formula on discrete time series data (TAKADA et al., 1999).

We will contribute a theory on the potential for a system of the air temperature
variation in this chapter. The stochastic process of air temperature variations is assumed to
be a Markov process. The verification of this assumption will be described in Chapter 4.

(a)

Fig. 5.  Time variation of histogram of the month-averaged temperature (a: on January, b: on July).
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3.1.  Basic equations on Markov processes
We assume a random process X(t) as a continuous process on state space Ω that

satisfies conditions of X(t0) = x0(∈Ω ) and X(t) = x(∈Ω ).

Assumption 1  X(t) is one of Markov processes that are determined by t(>t0) and X(t0).

At the condition of X(t0) = x0, the conditional probability P(x|x0, t) in the case of X(t)
= x can be expressed by the following Chapman-Kolmogorov equation (GOEL and
RICHTER-DYN, 1978).

P x x t t P x z t P z x t dz0 1 2 2 0 1 1, , , .+( ) = ( ) ( ) ( )∫Ω

We can obtain Eq. (2) by the Taylor expansion of Eq. (1).
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Fig. 5.  (continued).
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where Mn(x) is a moment of transition probability for degree n (natural numbers):

M x z x P z x dzn
n( ) = −( ) ( ) ( )

→ ∫lim , .
τ τ

τ
0

1
3

Ω

Equation (2) is a partial differential equation that describes variations of the process
statistically. Equation (2) is solved under the following initial condition.

lim ,    
t
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Condition 2:  Mn(x) ≠ 0 (n is even number).

In the case of condition 2, the process must be an anomalous process that diffuses
rapidly far in short time. It is conflict with regular processes. Then we can give the
following assumption for Mn(x) as a regular diffusion process.

Assumption 2  
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3.2.  Fokker-Plank equation
The solution of Eq. (2) can be obtained with the permutation of variables:
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Equation (2) goes over into Eq. (4) with Stratonovich’s rule (STRATONOVICH, 1963).
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where g(z|z0, t) is a probability density function that is transformed from P(x|x0, t), z0 is the
initial condition corresponding to x0, J(z|x, t) is flow of the probability and its stationary
value J(z|x, ∞) ≡ J(∞) is a constant. A stationary solution of Eq. (4) can be obtained strictly
with a stationary probability density function g(z) (HARKEN, 1975):
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g z C J a d dz a d( ) = − ∞( ) − ( ){ }[ ] ( ){ } ( )∫∫ ∫2 2 2 5exp ˆ exp ˆξ ξ ξ ξ
ΩΩ Ω

where C is a normalization factor defined as

g dξ ξ( ) =
−∞

∞
∫ 1.

Equation (5) is simplified as Eq. (6) on a natural boundary condition such as J(±∞) = 0.

g z C a d( ) = ( ){ } ( )∫exp ˆ .2 6ξ ξ
Ω

We can expect that the stationary probability density function g(z) can be obtained
with the normalized histogram of the time series data.

3.3.  Stochastic dynamical equation
We also consider general processes that satisfy Mn(x) = 0 for (n ≥ 3) and we assume

a stochastic dynamical equation (SDE) as the following equation that is corresponding to
a probability density function P(x|x0, t). We define an SDE where a random variable
depends on the sum of a function â (z) and fluctuating force.

dz t

dt
a z F t

( ) = ( ) + ( ) ( )ˆ 7

where F(t) is the standardized fluctuating force generated with a Gauss type stochastic
process. The time averages of F(t) and F(t)F(t + τ) are defined as Eq. (8):

F t

F t F t t

( ) =
( ) +( ) = ( ) ( )0

8
τ δ

where the angle brackets 〈•〉  denote on the average over time and τ  is lag-time (0 ≤ τ ≤ N,
where N is length of data). Otherwise, we can consider a set of zero points of the potential
function as equilibrium space. We can give a potential function by the space integral of the
function â (z) on Eq. (7):

V z a d
z( ) = − ( ) ( )∫ ξ ξ . 9

Here, we can rewrite Eq. (6) by the substitution of Eq. (9).

g z C V z( ) = − ( ){ } ( )exp .2 10
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Therefore, the following proposition is obtained by differentiating both sides of Eq. (10).
(TAKADA, 2001)

Proposition 1  The stationary points of a potential function V(z) and a stationary
probability density function g(z) are corresponding.

In Sec. 4, we will describe an application of Proposition 1 for time series of the air
temperature variation.

4.  Verification for Our Theory

If we verify that the data of air temperature variation satisfies Assumptions 1 and 2,
we can apply the theory and the Proposition 1 in Sec. 3. Then, we can expect an
interpretation for a form on the potential of the air temperature variation. We propose the
following methods to verify them. We tried a type of verification for the data.

4.1.  Verification for randomness of the time series
The air temperature variation has been researched by a deterministic theory on

meteorology. In this paper, we verified randomness on the time series of month-averaged
temperature with run tests (Appendix C). We could suggest that each time series of month-
averaged temperature was random except for March, May and December. Therefore,
randomness of each time series was verified. Hence, methods of statistical tests could be
applied for time series of air temperature.

4.2.  Verification for Markov processes
We put a sample correlation function of Nk-pair samples from a binominal population

as r where the correlation function of the population is ρ. The Nk-pair samples are composed
of {x1, ..., xNk

} and {x1+k, ..., xN kk + } where Nk = N – k and 1 ≤ k ≤ N/2 = 50 (k is lag-time).
We can use a z-transformation of the function r. The function tanh–1r can be regarded as
a standard distribution where its average is tanh–1ρ and its standard distribution is 1/

Nk − 2  when Nk is greater than 50 (YOSHIDA and YOSHIDA, 1958). This value of the
standard distribution corresponds to the significance level of the correlation coefficients.

Here, we can verify significance of sample auto-correlation coefficients rxx(k) as
follows. A null hypothesis H0 is that one can admit the significant auto-correlation on the
time series data statistically. If the following equation holds, H0 is accepted with a
significance level 0.05:

tanh− ( ) >
−

( )1 2

2
11r k

Nxx
k

where the reference value 2/ Nk − 2  is two-times of a speculated standard distribution.
The auto-correlation coefficient of discrete time series {xi} is defined as Eq. (12).
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The relation between tanh–1rxx(k) and k is shown as Fig. 6a for the time series of year-
averaged temperature and Fig. 6b for the time series of month-averaged temperature on

Fig. 6.  Auto-correlation coefficient of the time series (a: the year-averaged temperature, b: the month-averaged
temperature on January).
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January as a typical representation where supremum and inferior limit of reference values
are shown as dashed lines. The absolute values |tanh–1rxx(k)| were smaller than each
reference value except for small k (k ≤ 13, 18 ≤ k ≤ 20, k = 37, k = 39) on the year-averaged
temperature. The absolute values of the sample auto-correlation coefficients were almost
smaller than the reference values for all time series of month-averaged temperature. Then
we suggest that H0 was rejected on the month-averaged temperature, but not rejected on the
year-averaged temperature for small k. We have considered that the regularity of the year-
averaged temperature is caused by the additive operation. We can extract the randomness
on the air temperature variations with effect of the transformation as mentioned in Sec. 2.

There are significant auto-correlation coefficients for small k because the extent of
span for the average is too long. We assume that variations of the air temperature almost
satisfy Assumption 1. We will discuss on the time-averaged potential of the year-averaged
temperature for a purpose of the suggestion to their mathematical model.

Fig. 7.  Numerical integration of moment of transition probability (a: the year-averaged temperature, b: the
month-averaged temperature on January).
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4.3.  Verification for regular diffusion processes
Assumption 2 is verified by numerical integrations of the moment of transition

probability on a differentiated description:

M x z x P z xn
n

z

( ) = −( ) ( ) ( )
∈
∑1

13
τ

τ,
Ω

where P(z|x, τ) = #{Xi = x � Xi+τ = z}/#{Xi = x}, τ is a time step of data (here, treated as 1
for simplification), Ω is state space that x can be given and the character # means “the
number of”. If Mn(x) is sufficiently small for n ≥ 3 than n ≤ 2, Assumption 2 can be verified.
To show the all case of Mn(x) is complex because Mn(x) can be defined for all values of x.
Relations between n and Mn(x) are shown as Fig. 7a for typical x of the year-averaged
temperature and shown as Fig. 7b of the month-average temperature on January. We could
admit that Mn(x) were simply decrease as an increment of n and Mn(x) (n ≥ 3) were
sufficiently small than M2(x). The same results were admitted for each month-averaged
temperature. Then we can suggest that Assumption 2 is appropriate for the time series data.

5.  Discussion

We analyzed the time series of air temperature variation with views of
a) a dynamical steady state of the system
b) a structural steady state

and described as a stochastic process. This kind of research with use of stochastic analysis
has been not reported on meteorology.

5.1.  Analysis of air temperature variation
We have shown an upward tendency of air temperature with statistical tests in Sec. 1.

These tests were reasonable to show a general tendency, but these were insufficient to
analyze detail of the time variations. We have shown the time variations of a form among
histograms in Sec. 2. We could find a time variation of the histogram that a new peak of
histogram appears at higher temperature. We can also suggest that this analysis of the time
variation on the form of histograms is meaningful for the analysis of time series.

5.2.  Stochastic dynamical equation of air temperature variation
We have shown that the form of a histogram and the potential is corresponding under

the assumptions. We examined the verification of these assumptions for time series of air
temperature variations and discussed suitability on this theory. As a result, we could
consider that the process that reproduces the series of month-averaged temperature
satisfies the assumptions. But, on the series of year-averaged temperature, the auto-
correlation coefficients exceed significant level with the range of small lag-time. The
significantly large correlation in small lag-time might be produced with an operation of
year-average.

The variation of a form of a potential function is assumed to be obedient to a delay
convention on one-dimensional cut off of wedge catastrophe (Fig. 8) on differential
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geometry (POSTON and STEWART, 1978). If we assume the same type of convention on the
time-averaged potential, we can build up the following hypothesis on the physical system
that describes air temperature variation (Fig. 9).

Hypothesis 1  A stational point on the time-averaged potential moves in accordance
with a delay convention on catastrophe theory.

Moreover, we can give a physical explanation of time series with satisfaction of those
assumptions, for example, appearance the stable equilibrium point on high temperature in
1990s (downward arrows on Fig. 2). We suggest that our proposed description and
modeling of the system are meaningful.

6.  Conclusion

1) Form of the histogram of air temperature has been changed with statistical
significant. We have shown time variations of a form of the potential for the time series.

Fig. 8.  One-dimensional cut off of wedge catastrophe.

Fig. 9.  Hypothesis of time variation of form of time-averaged potential (horizontal axis is temperature).
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We could find that the variation of time series is not monotonous increment but a spatial
type of variation that a new peak appears on higher temperature with the view of form of
histograms. The time variations of the histograms seem to be meaningful for analysis of
time series. However, this result is just a description of tendency on the temperature
variation at one measurement point of Nagoya, and we cannot say on global warming with
this result.

2) We can assume that “form of the histogram” and “form of the potential” are
corresponding on the system of the air temperature variation. And we can build up the
hypothesis that form of the potential changes in accordance with delay convention on a
catastrophe theory. However, the hypothesis is induced with an assumption that the system
of the air temperature variation can be described with our mathematical model as the SDE.
Its verification is a problem in future.

Appendix A.  Statistical Test of Regression Coefficient

A regression line of the time series (year-averaged temperature) is described as y = â
+ b̂ x where b̂  is a regression coefficient (MATSUMOTO and MIYAHARA, 1990). If Eq. (A1)
holds, a null hypothesis b̂  = b0 is rejected with a significant level α :

ˆ

/
/

b b

S N S
t

E xx
N

−

−( )
> −( ) ( )−

0
2

2
1 2α A1

where N is the number of data,

S x x S y a bx

a N y b x b x N x y S

xx i
i

N

E i i
i

N

i
i

N

i
i

N

i j
j

N

i

N

i

= −( ) = − +( ){ }
= −







= −( )
























= =

= = ==

∑ ∑

∑ ∑ ∑∑

2

1

2

1

1 1 11

1 1

,    ˆ ˆ ,

ˆ / ˆ ,    ˆ / / xxxx

and tN–2(1 – α/2) is t-distribution. The value of the left side of Eq. (A1) for b = 0 is 7.68 and
the value of the right side is 1.98 at a = 0.05; therefore the null hypothesis is rejected. We
could admit an upward tendency of year-averaged temperature.

Appendix B.  Welch’s Test

In Sec. 2, we have shown the time variation of form of histograms. In this section, we
employ statistical tests of the time variation of air temperature.

Welch’s test is a statistical test that finds difference of averages of two populations
{a1, ..., aN p

}and {b1, ..., bN p
} where Np is the number of data points if variance of the

populations are unknown (SOKAL and ROHLF, 1969). Here, {a1, ..., aN p
} is a population
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as the temperatures from 1900 to 1949, {b1, ..., bN p
} is from 1950 to 1999. They are

corresponding to first and last extents on the histogram (Figs. 3a and 3b). If populations {a1,
..., aN p

} and {b1, ..., bN p
} are normal populations, Welch’s test could be applied. Goodness

tests of the populations to normal distributions are shown as follows. According to Welch’s
test, if Eq. (B1) holds, we can reject the hypothesis that mean values of two populations are
equal with significance level α  = 0.05.

a b

s s N
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a b p

m

−

+( )
> −
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where a  and b  are mean values of populations {a1, ..., aN p
} and {b1, ..., bN p
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and tm(1 – α/2) is t-distribution. The value of the left side of Eq. (B1) was 7.11 and the right
side was 0.717. These values satisfied Eq. (B1). We can suggest that the mean values of
each population are significantly different.

We explain verification of the normal distribution here. If the following Eq. (B2) is
hold, a null hypothesis pi ≠ pi

0 is rejected with a significant level α

x N p

N p

i p i

p ii
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where k is the number of classes of the histogram, k – 1 is the degree of freedom, xi is
frequency of the class i, pi is a probability density function assumed from the population,
pi

0 is the normal distribution whose average and dispersion are equal to the sampling
average and sampling dispersion and χk–1

2(1 – α) is the chi-square distribution. A class step
is set to 1 degree. The values of the left side of Eq. (B2) was 1.51 for {a1, ..., aN p

} and 11.27

for {b1, ..., bN p
} and the values of the right side of Eq. (B2) was 66.5. Then, Eq. (B2) was

hold for both populations and the null hypothesis was rejected. We can assume that Welch’s
test is reasonable.

Appendix C.  Run Test

A run test is used for verification of hypothesis “the time series is random”. A
significant point of verification on the number of run is introduced to the run test. This
method is competent for a large number of samples.
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A value of each point of time series is compared to a median of the time series, and the
value is written as;

a) a symbol “+” for a larger value
b) a symbol “–” for a smaller value

where the continuous symbols + or – are called a run. The number of the continuous the
symbol + is presented as m and – is n. Length of the run L is defined as length of the
continuous group of the same symbol. If the length of the run is too long, it shows that
observed values makes the same type of groups. Otherwise, If the different symbols (+ and
–) appears alternatively and the length of the run is too short, it shows that the series have
regularity. These series of the observed value are not random series. Then, we think
verification of the randomness of the time series with a null hypothesis “the time series is
not random”. If m and n are larger than 20 at least and the time series are random, a
statistical test value on L satisfies Eqs. (C1) and (C2) with a normal approximation
(MINOTANI, 2000).

E L
mn

m n
( ) =

+
+ ( )2

1 C1

V L
mn mn m n

m n m n
( ) = − −( )

+( ) + −( )
( )2 2

12 C2

where E(L) is a average, V(L) is a standard deviation of the standard distribution.
The reference value is 1.96 for a significant level. The statistical test value on each

time series calculated with Eq. (C1) is shown as Table 1. Then the null hypothesis is
accepted except for the time series on March, May and December.

The data used on this research are provided by Nagoya Meteorological Observatory.
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