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Abstract.  We introduce a model of spatially distributed populations of organisms that
mate and compete with others in local neighborhoods. Competition for local finite
resources causes Turing instability in population distribution, possibly leading to the
formation of isolated groups. In the presence of disruptive selection against genetic
intermediates, this model also shows dynamically coarsening domains in genetic
distribution. We examine an interplay of these two distinct dynamics, both analytically
and numerically, and show that the domain coarsening process is strongly affected by the
spatial separation between groups created by the Turing pattern formation process. The
ratio between mating and competition ranges is found to be one of the crucial parameters
to determine the long-term evolution of genetic distribution in the population.

1.  Introduction

The dynamics of spontaneous pattern formation, first introduced to biology by
TURING (1952) five decades ago, has recently been attracting attention in many subfields
of biology to describe various general and/or specific phenomena. Besides Turing’s static
patterns that arise when a homogeneous solution is unstable only for a limited range of
wavelengths, there are other classes of pattern formation whose range of instability is not
bounded, leading to scaling growth of patterns with time. Such dynamic patterns in a two-
dimensional space have recently been introduced into ecology (LEVIN and SEGEL, 1985;
GANDHI et al., 1998, 1999) and evolutionary genetics (SAYAMA et al., 2000, 2003). Most
of the results obtained in these kinds of studies can be approximately described with a
single non-conserved order parameter (e.g. type of organisms). They typically result in
several well-known system behavior such as symmetry breaking and domain coarsening,
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or nucleation and growth, depending on fitness assignments and initial conditions.
Here we consider a more general case that includes both static and dynamic pattern

formation processes within a single model framework. The model we present pairs
population distribution and genetic distribution of organisms. The underlying dynamics of
our model correspond to the formation of isolated groups through population distribution
variation and, in the presence of disruptive selection, symmetry breaking and domain
coarsening through genetic distribution variation. We study the regimes in which patterns
form and the characteristic wavelengths of the patterns, using linear stability analysis.
Numerical simulations confirm these analytical results, and furthermore, demonstrate how
the domain coarsening behavior interacts with Turing pattern formation. The ratio of the
two key length scales in the problem, the mating range and the competition range, is found
to be crucial in the long-term evolution of the patterns.

2.  Model

We model a population with local genetic mixing by sexual reproduction and local
competition for finite resources necessary for reproduction. We restrict ourselves to simple
haploid genetics where a genome is made of two genes, each of which is one of two allelic
types (+ and –) and is inherited from one of the two parents participating in sexual
reproduction. Thus there are four possible genotypes, [++], [+–], [–+] and [– –]. Such
organisms are distributed over a two-dimensional discrete regular spatial grid. At each
discrete time step (breeding season), offspring are born and part of the previous population
dies. Reproduction requires comsumption of local resources that are limited per site per
season, so that it bounds the total number of offspring born there. Genetic mixing by sexual
reproduction and competition for limited resources take place within local neighborhoods
ranging over several sites, whose size may be different from one another.

The general form of the iterative equation of local populations on each site is
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where nab(x) (a, b are either + or –) is the local population of genotype [ab] at site x, with
the constraint nab ≥ 0. We also use the following notations:

n n n n n≡ + + + ( )++ +− −+ −−, 2

n n na a a∗ + −≡ + ( ), 3

n n nb b b∗ + −≡ + ( ). 4

The prime on the left hand side of Eq. (1) denotes the value after a unit of time. σab is the
survival rate of parents of genotype [ab], and λab is their reproductive rate (the number of
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offspring born per parent per season). These rates are bounded so that 0 < σab < 1 and λab
> 0. M is the mating neighborhood, and C is the competition neighborhood. We assume that
M and C are a set of relative coordinates of sites in a pseudo-circular region centered at the
site, whose radius is RM or RC and whose edges are jagged (not a perfect circle) along a
discrete square spatial lattice. κ is the carrying capacity per site. Each pair of angled
brackets in the right hand side represent the local average of the given function in the
neighborhood around x, i.e.

f f N
N

N

x x r
r

( ) ≡ +( )
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where |N| is the number of sites included in the neighborhood N. The terms inside the square
brackets on the right hand side of Eq. (1) describe a logistic growth restriction on the
population at local sites due to the already existing population in their vicinity.

Equation (1) implies that if the limitation on population by competition is ignored,
(1 – σ) of the population at a particular site will die and λ  of the average population within
its local mating neighborhood will be born in each breeding season. The genetic composition
of the newborns is determined in Eq. (1) by including the product of two allelic probabilities
observed within the mating neighborhood. For more details of the model we refer to
SAYAMA et al. (2002).

3.  Turing Pattern Formation in Population Distribution

If there is no difference in fitness (reproduction and survival rates) among all the four
genotypes, i.e., σab = σ and λab = λ  for all a and b, then summing up both sides of Eq. (1)
for all genotypes gives

′( ) = ( ) + ( ) − ( )[ ] ( )n n n n
M C

x x x xσ λ 1 6,

with the constraint n ≥ 0. Here we measure the populations in units of the carrying capacity
κ  for simplicity. This is a simplified equation for the population distribution only,
independent of genetic distribution, which we call the flat fitness case. In this case genetic
distribution shows simple random diffusion because no selective force is acting for any
particular genotype (SAYAMA et al., 2002). We thus focus in this section on the dynamics
of population distribution only. Mean field treatment of Eq. (6) gives two stationary
solutions, n = 0 and n = (σ + λ  – 1)/λ  ≡ n0.

To investigate the instability of Eq. (6), we consider a two-dimensional oscillatory
perturbation added to n0, with wavevector v for the x-direction and w for the y-direction.
We write the time evolution of perturbation in a two-dimensional population as

n x y n s x yt t, ,( ) = + ( ) ( )0 7ξµ
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with

s x y vx wy, sin sin ,( ) = +( ) +( ) ( )φ ψ 8

where ξ is a small amplitude. The mean field solutions are unstable and patterns form when
µ is greater than 1. Substituting Eq. (7) into Eq. (6) and keeping only linear (first-order)
terms of ξ , we obtain

n x y n s x y s x y s x yt t
M C

+ ( ) = + ( ) + −( ) ( ) − + −( ) ( )[ ] ( )1
0 1 1 9, , , , .ξµ σ σ σ λ

Approximating the averages over M and C using integrals over continuous circular
neighborhoods gives
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where f ≡ v w2 2+  is the magnitude of the two-dimensional wavevector, and Jn is the
Bessel function of the first kind of order n (SAYAMA et al., 2002). Applying this
approximation to Eq. (9), we obtain

µ σ σ σ λ= + −( ) ( ) − + −( ) ( ) ( )1 1 11A fR A fRM C

with

A u
J u

u
( ) ≡ ( ) ( )2

121 .

This function has a conspicuous minimum at u ≈ 5.13562 where A(u) ≈ –0.132279, which
we call u0 and z0 in what follows.

The condition for instability of the mean field solutions is the existence of such values
of u that satisfy

δ γA u A u/ ,( ) < ( ) − ( )1 13

where u ≡ fRM, γ ≡ RM/RC, and δ ≡ (σ + λ  – 1)/(1 – σ). Here we use the following
approximation: When parameters γ and δ gradually move from stable regimes, the value of
u that first satisfies this inequality should be obtained near the minimum of its left hand
side, at u = γu0 where δA(u/γ) = δz0. With this assumption, the condition for the satisfiability
of the inequality is
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δ γz A u0 0 1 14< ( ) − ( ).

Figure 1 shows the regimes where this condition is, or is not, satisfied in the (γ, δ) plane.
We see that, as the mating range becomes smaller than the competition range, the mean
field solution can be destabilized, while if the mating range is greater than the competition
range, the stability of the mean field solution is determined almost solely by δ. Numerical
simulation results are embedded in the same figure for several different γ and δ, implying
the close correspondence of our analysis to the actual model behavior. The existence of an
instability is seen as the formation of isolated groups (spots or stripes) similar to those seen
in Turing instability models (TURING, 1952; MURRAY, 1981; YOUNG, 1984). Local

Fig. 1.  Phase diagram in the (γ, δ) plane showing the stability of the mean field solution obtained from the
inequality (14). In the shaded region below the curve, δz0 > A(γ u0) – 1, which implies that the mean field
solution is stable, while above the curve it is not. Numerical simulation results for several sample points are
embedded in the plot. Each picture embedded represents a snapshot of the evolution of spatial patterns taken
after 500 updates. Initial conditions are randomly generated populations with n = 0.1κ (with ±0.02κ
fluctuations) for each site. The space consists of 128 × 128 sites with periodic boundary conditions. The
brightness at each pixel represents the local population density. σ is set to 0.9 for all cases. λ  is varied to
obtain different values of δ. The values of (RM, RC) used here are (5, 15) for γ = 1/3, (5, 10) for γ = 1/2, (10,
10) for γ = 1, (10, 5) for γ = 2, and (15, 5) for γ = 3.
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population growth and competition for resources within C in our model correspond to local
activation and long-range inhibition factors of Turing pattern formation, respectively. We
have calculated in SAYAMA et al. (2002), with the assumption δ >> 1, the characteristic
wavelength of the patterns L to be

L
R

u
RC

C= ≈ ( )2
1 22345 15

0

π
. ,

which coincides with the numerical results shown in Fig. 1. We have also found in the same
literature that the genetic diffusion over isolated groups stops when the spatial separation
is wider than the mating range of organisms. The critical ratio of the mating and
competition ranges γc (below which groups become genetically decoupled after Turing
pattern formation) is estimated be γc ≈ 0.612 (SAYAMA et al., 2002).

An interesting characteristic of the present model is its sensitivity to the shape of
neighborhoods. The average of a function f(x) over a neighborhood N can be written by
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where WN(r) is a weight function. In the presented model we adopt “circular” neighborhoods,
i.e. WN(r) = 1 if |r| < RN and otherwise 0. We have tested other possibilities such as “square”
neighborhoods or “Gaussian” neighborhoods. The square neighborhoods, obtained by re-
defining WN(r) = 1 if max(|rx|, |ry|) < RN and otherwise 0, give results similar to those with
circular neighborhoods. However, this is not the case for the Gaussian neighborhoods with

WN(r) = e RN−( )r /
2

. In this case, the mean field solution is stable against perturbation of any

wavelength in population distribution, because the integral of sin functions with Gaussian
weights, which is a Fourier transform, is again a Gaussian. This cannot be negative in
contrast to the function A(u). Therefore the average of the perturbation at a given point
always has the same sign as the perturbation itself at that point. Even if the perturbation is
very small, the average cannot reverse its sign and destructive interference cannot happen
in population distribution, therefore spatial separation does not take place.

From a biological point of view, this result means that isolated groups may or may not
form depending on the organismal territorial behavior. In particular, when the range of
foraging or mating is well defined, groups may form. If they are too smooth, e.g. if
organisms diffuse in a random fashion (which results in Gaussian neighborhoods), groups
will not form. This prediction could, in principle, be verified experimentally.

4.  Introduction of Disruptive Selection

In this section we introduce disruptive selection (selection against genetic intermediates)
to the model, by assuming that genotypes [+–] and [–+] are not viable, i.e. σ+– = σ–+ = λ+–
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= λ–+ = 0. Disruptive selection arises in various conditions in nature, such as competition
for diverse resources or mutual dependence of multiple phenotypes (THODAY, 1972), and
is viewed as one of the most general and important causes of inhomogeneity generation,
including trait divergence and speciation (KONDRASHOV and KONDRASHOV, 1999;
DIECKMANN and DOEBELI, 1999). This additional assumption reduces the number of viable
genotypes to two, simplifying analytic treatments.

In what follows, we use g for n++ and h for n–– to make the notation concise. Similarly,
the survival and reproductive rates for these types are denoted by σg, λg, σh, λh. We restrict
ourselves to symmetric cases only, in which two viable genotypes g and h share the same
survival and reproductive rates, i.e. σg = σh = σ and λg = λh = λ. Finally, we again measure
the populations in units of the carrying capacity κ. With these assumptions Eq. (1) becomes

g g
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with the constraints g ≥ 0, h ≥ 0. Mean field treatment of these equations gives the following
four stationary solutions (SAYAMA et al., 2002):

•  g h= = ( )0 extinction

•  ,    g g h= + − ≡ = [ ]( )σ λ
λ

1
00 dominance by + +

•  ,    g h h= = + − ≡ − −[ ]( )0
1

0
σ λ

λ
dominance by 

•  .g h m= = + − ≡ ( )2 2

2 0
σ λ

λ
coexistence of the two

Versions of this disruptive selection model have been used to study symmetry
breaking and domain coarsening in spatially distributed populations (SAYAMA et al., 2000)
and stability analysis of polymorphic populations in reproduction-migration dynamics
among semi-isolated demes (DE AGUIAR et al., 2002).

We note that Eqs. (17) and (18) can be rewritten in terms of the local population, n =
g + h, and what we call type difference, c ≡ g – h (–n ≤ c ≤ n), i.e.
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We conduct a linear stability analysis of pattern formation in both population
distribution and type difference for the disruptive selection case. We study the mixed
solution only, because the dynamics of the one-type dominant solutions is the same as that
of the flat fitness case due to their robustness against type difference perturbation, which
can be verified by assuming h << g ≈ g0 (or g << h ≈ h0) in the mean field treatment of Eqs.
(17) and (18). Adding a two-dimensional oscillatory perturbation to the mixed solution, we
write

n x y m s x yt t, , ,( ) = + ( ) ( )2 210 ζν

c x y s x yt t, , ,( ) = + ( ) ( )0 22ην

where ζ  and η are small amplitudes and s(x, y) is the same space-dependent perturbation
(Eq. (8)) as used in the previous analysis. Substituting Eqs. (21) and (22) into Eqs. (19) and
(20) and keeping only linear terms of ζ  and η, the equations for these two variables
decouple and we obtain

n x y m s x y s x y s x yt t
M C

+ ( ) = + ( ) + −( ) ( ) − + −( ) ( )[ ] ( )1
02 1 2 1 23, , , / , ,ζν σ σ σ λ

c x y s x y s x yt t
M

+ ( ) = ( ) + −( ) ( )[ ] ( )1 2 1 24, , , .ην σ σ

Using the approximation in Eq. (10) for the local averages results in

νζ σ σ σ λ ζ= + −( ) ( ) − + −( ) ( )[ ] ( )1 2 1 25A fR A fRM C/ ,

νη σ σ η= + −( ) ( )[ ] ( )2 1 26A fRM ,

with eigenvalues

ν = σ + (1 – σ)A( fRM) – (σ + λ/2 – 1)A( fRC) (27)

for eigenvector (ζ , 0), which we call the n-direction, and
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ν = σ + 2 (1 – σ)A( fRM) (28)

for eigenvector (0, η), which we call the c-direction.
Equation (27) is similar to Eq. (11), so we can apply the results of the previous stability

analysis to the n-direction, by replacing δ with δ̂  ≡ (σ + λ/2 – 1)/(1 – σ). The regime for
patterns to form in population distribution is thus exactly the same as shown in Fig. 1 if we
view the ordinate as the δ̂  axis. The characteristic wavelength L is the same as before.

In terms of the c-direction, however, the eigenvalue ν depends only on σ, RM, and not
on λ , RC. Considering |ν| > 1 we obtain

A fRM( ) > ( )1

2
29,

which numerically gives fRM < uc ≈ 2.21509. This means that any perturbation in the c-
direction whose wavelength is longer than the critical value

Lc ≡ 2πRM/uc ≈ 2.83654RM (30)

destabilizes the mean field solution. This is the direction of type difference, g = –h,
increasing g while decreasing h, or the reverse. This result implies that all perturbations
with shorter wavelengths than Lc are filtered out in an initial transient and then each local
site tends to align with its neighbors at the scale Lc toward either genotype [++] or [– –].

Note that Lc only depends on the mating range and not on the competition range. This
result is intuitive because it corresponds to the relevance of the mating range for genetic
patterns and the competition range for population distribution variation. In the linear
stability analysis, these two effects are found to be independent. However, an interplay
between them arises once nonlinear effects become important. The details of this process
will be discussed in the following.

5.  Domain Coarsening in Genetic Distribution

We next consider the dynamics of genetic distribution in the disruptive selection case
and how it is affected by the spatial population structure created by competition. We start
by rewriting the model using the relative probabilities of genotypes. The update equation
of the probability of one genotype can be obtained from Eqs. (19) and (20) by defining pg
≡ g/n = (n + c)/(2n) for sites where organisms exist (n > 0), which results in
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with
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Pg
M(x) is the probability of genotype [++] observed within M around x. For populations that

do not exceed the carrying capacity, U(x)/[σ + U(x)] is always positive and thus pg always
approaches the first term in the square brackets. The above equations are for genotype [++]
but they also apply to genotype [– –] due to the symmetry between the types.

The mean field version is
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where χ ≡ U/[σ + U]. This form shows that pg tends to go toward either 0 or 1, depending
on whether its current value is larger or smaller than 1/2. pg = 0 and pg = 1 are the only
possible stable solutions. Thus, any change in the average genetic composition within the
mating neighborhood will not significantly affect the future genetic composition at the
center of the neighborhood, unless the change is great enough to move the average
composition across the value 1/2. Therefore, the change of genetic composition due to the

Fig. 2.  Numerical simulation result of pattern formation in genetic distribution in the disruptive selection case.
The space consists of 128 × 128 sites with periodic boundary conditions. Dark gray represents the existence
of [++] organisms, while light gray represents the existence of [– –]. The initial condition is a randomly
generated population with n = 0.1κ  (with ±0.02κ fluctuations) for each site. σ = 0.9, λ  = 0.7, RM = 5 and RC

= 3, so that δ̂  = 2.5 and γ = 1.66667. This parameter setting falls in the regime where the homogeneous
population distribution is stable (see Fig. 1) and thus no spatial separation occurs. The observed behavior
is symmetry breaking and domain coarsening, which is found in systems with non-conserved order
parameters, such as quenched Ising models.
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influx of different genotypes, or genetic invasion, can occur only if there is a sufficiently
large bias imposed on the local genetic composition from neighboring areas.

Figure 2 shows a numerical simulation of this process with parameter settings for
which the homogeneous population distribution is stable. Disruptive selection causes each
local region to assume either of the two fittest types, giving rise to symmetry breaking and
formation of patterns of two different genotypes (dark gray and light gray shown in the
figure). Once the patterns form, their subsequent evolution follows well-known domain
coarsening behavior in systems where the order parameter is not conserved (BRAY, 1994),
e.g. quenched Ising models. The boundaries between the two types (called hybrid zones)
move toward the direction determined by their local curvature, which acts as a bias on the
local genetic composition. The characteristic wavelength of the patterns grows as t1/2

(SAYAMA et al., 2000). In general, a population of finite size will eventually be dominated
by one of the two types. Such coarsening dynamics is consistent with the eigenvalue ν in
the c-direction in Eq. (28), describing the instability of the mixed solution to type
difference perturbations. The value of ν monotonically increases as the wavelength of the
perturbations increases for L > Lc, indicating that larger scale perturbations become more
apparent over longer times.

6.  Domain Coarsening over Turing Patterns

For populations spontaneously structured into spatially isolated groups, the spatial
separation between the groups significantly affects the genetic invasion processes. When
such isolation occurs, the ratio of the mating and competition ranges, γ, determines the
possibility of genetic invasion.

We systematically consider this problem by dividing the local population within the
mating neighborhood into two parts: a particular group at the center of the neighborhood,
and the set of other groups that are spatially separated from the central group. Each part is
represented by its total population. In a sense, this characterization corresponds to a mean
field approximation applied to the group-level description of the system. The total
population and the probability of genotype [++] within the focal group are denoted by nen
and Pg

en, and similarly, those outside the group by nex and Pg
ex. We consider how the

genetic composition of the focal group Pg
en develops over time, assuming Pg

ex, nen and nex
as environmental constants. In the context of domain coarsening in type difference, Pg

ex

can be considered to represent the local curvature of boundaries between two types for the
groups at or near the boundaries. This enables us to obtain implications for the domain
coarsening behavior from this analysis.

We assume that each isolated group is genetically well mixed so that Pg
en is represented

by the local probability pg at the center of that group. From Eq. (31), pg tends to approach
(Pg

M)2/[(Pg
M)2 + (1 – Pg

M)2]. The quantity Pg
M, the probability of genotype [++] within the

neighborhood, is written as

P
P n P n
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where d ≡ nex/[nex + nen]. The parameter d is the ratio of the subpopulation outside the focal
group to the total population, within the neighborhood. Applying Eq. (35) to Eq. (31) and
replacing pg with Pg

en, we obtain a difference equation

∆P P P
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To study the possibility of genetic invasion, we consider when stable solutions of
∆Pg

en = 0 exist for particular Pg
ex and d. We solve ∆Pg

en = 0 with the restrictions 0 ≤ Pg
en

≤ 1 and 0 ≤ Pg
ex ≤ 1, which gives
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which forms a continuous function that is differentiable for 0 < Pg
en < 1 including 1/2.

Figure 3 shows phase diagrams in the (Pg
en, Pg

ex) plane drawn from these solutions for
different values of d. At d = d0, a critical situation arises where the curve comes in contact
with Pg

ex = 0 and Pg
ex = 1. At d = d1, another critical situation is reached where the curve

loses its unstable part. The actual values of d0 and d1 are analytically calculable, which
results in d0 = 3 – 2 2  ≈ 0.171573 and d1 = 1/2.

From Fig. 3 we understand the following:
For d = 0:

The environment Pg
ex has absolutely no effect on the genetic composition of the focal

group.
For 0 < d < d0:

A group with Pg
en close to 1/2 is sensitive to Pg

ex. However, a group starting at or near
Pg

en = 0 or 1 cannot change to the opposite type due to the existence of intermediate stable
solutions. Once an isolated group approaches dominance by either of the two fittest
genotypes, genetic shift from one type to another is not possible regardless of Pg

ex.
For d0 < d < d1:
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Genetic invasion is possible for Pg
ex larger (or smaller) than the local maximum (or

minimum) of the curve. This indicates that the influx of a different genotype to the group
must be greater than a threshold to cause genetic invasion. In the context of domain
coarsening, boundaries whose local curvature is smaller than the threshold may be frozen,
and in general will not become flat. The maximal curvature that can be kept from
coarsening is determined by the values of Pg

ex at its extrema, which is a function of d.
For d1 < d:

Pg
en always converges toward a value determined solely by Pg

ex, regardless of its
original state, thus genetic invasion always occurs. In the context of domain coarsening,
any small curvature of boundaries can, in principle, give rise to change in genetic
composition in the group at the boundaries, and coarsening continues until all the
boundaries become flat or the entire population becomes dominated by one type.

The variable d is ultimately determined by the model parameter γ, the ratio of mating
and competition ranges. For large γ, the mating neighborhood extends over more groups,
which increases d as well. Although the exact value of d is hard to obtain, we estimate it
by using the assumptions that (1) groups are arranged on a regular hexagonal grid (Fig.
4(a)) as seen in the numerical simulations, and that (2) the population distribution within

Fig. 3.  Phase diagrams in the (Pg
en, Pg

ex) plane for different values of d, obtained from Eqs. (37) and (38). The
curves represent the solutions of ∆Pg

en = 0. Black parts of the curves are stable and gray parts are unstable.
For d < d0, a group starting at or near Pg

en = 0 or 1 remains close to its original state almost regardless of
Pg

ex. For d0 < d < d1, genetic invasion is possible for sufficiently large (or small) Pg
ex. For d > d1, genetic

invasion always occurs since the final state of Pg
en is determined solely by Pg

ex, regardless of its original
state. The actual values of d0 and d1 can be found analytically to be d0 = 3 – 2 2  ≈ 0.171573 and d1 = 1/2.
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a group is uniform. With these assumptions, nen is the circular area shown by white, and nex
is the area shown by gray, in the figure. nen = π(L/4)2 for RM > L/4. The algebraic solution
gives nex(RM) plotted in Fig. 4(b), and d(RM) plotted in Fig. 4(c). The critical values of RM

such that d = d0 = 3 – 2 2  and d = d1 = 1/2, which we call R0 and R1, are also shown.
Numerically we obtain

R0 ≈ 0.791234L ≈ 0.968RC ≡ γ0RC, (39)

R1 ≈ 0.869629L ≈ 1.06RC ≡ γ1RC, (40)

where the coefficients before RC are the corresponding values of γ, which we call γ0 and γ1.
Finally, we note that γc computed in the flat fitness case still applies to the disruptive
selection case with no modification. The analysis discussed here applies to spot patterns.
A similar analysis may be done for the stripe patterns that occur for small δ̂  (see Fig. 1).

Using the above results, the following scenario describes the role of γ in the genetic
invasion processes in the disruptive selection case:

Fig. 4.  (a) Illustration of the idealized group distribution assumed to compute d as a function of γ = RM/RC. The
isolated groups are assumed to be arranged on a regular hexagonal lattice with basis vectors of length L and
group diameter L/2. The population distribution is assumed to be flat within a group and thus the total
population of a region is proportional to the populated area. nen is the area of the central white circle (nen =
π(L/4)2), while nex is the total area of the gray regions. (b) A plot of nex as a function of RM, drawn based
on analytical calculation using the assumptions in (a). (c) A plot of d as a function of RM, drawn from (b).
Two critical points d = d0 = 3 – 2 2  and d = d1 = 1/2 are shown with the corresponding RM values R0 and
R1.
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Fig. 5.  Numerical simulations of pattern formation in both population distribution and type difference for
several different values of γ in the disruptive selection case. The space consists of 128 × 128 sites with
periodic boundary conditions. Red represents the existence of [++] organisms, green represents the
existence of [– –], and black represents empty (or nearly empty) regions. σ = 0.9 and λ  = 3.0 so that δ̂  =
14. RC is fixed to 10, while RM is varied to obtain different values of γ. The initial condition is a randomly
generated population with n = 0.1κ (with ±0.02κ fluctuations) for each site. The same initial condpition is
used for all cases to clarify the difference of behaviors for different γ. For γ < γc ≈ 0.612, complete genetic
decoupling occurs once groups are fully isolated from each other. For γc < γ < γ0 ≈ 0.968, groups are
effectively decoupled once they approach dominance by one of the two types (after about 200 updates). In
contrast, for γ > γ1 ≈ 1.06, coarsening continues after the isolation of groups, leading to eventual dominance
of the whole population by one type. Between these regimes (γ0 < γ < γ1) there is a distinct behavior where
coarsening continues after the isolation of groups but stops when the local curvature of boundaries becomes
below a threshold.
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Fig. 6.  Numerical simulations of pattern formation in type difference where disruptive selection is induced in
a population which is already structured into isolated groups. As in Fig. 5, red, green and black indicate [++],
[– –] and empty regions, respectively. Yellow represents a mixed population of all the possible genotypes.
RC is fixed to 10, while RM is varied to obtain different values of γ. The conditions shown at time 0 are
generated through 500 updates with σ = 0.9 and λ = 1.5 for all four genotypes (i.e. no disruptive selection)
starting from the same initial population as used in Fig. 5. At time 0 the four possible genotypes all co-exist
in yellow groups. Then σ+–, σ–+, λ+– and λ–+ are all set to zero to cause disruptive selection, while λ++ and

λ–– are increased to 3.0 to make δ̂  after the introduction of disruptive selection equal to δ before the
introduction of disruptive selection. The behavioral difference between cases γ < γ0 and γ > γ1 appears earlier
than the corresponding cases in Fig. 5, while the final outcomes are similar to those in Fig. 5.
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For γ < γc (complete decoupling):
Once spatial separation of groups takes place, organisms in one group are genetically

decoupled from the rest of the population and each group’s genetic composition evolves
independently. This corresponds to the case where d = 0.
For γc < γ < γ0 (incomplete decoupling):

Some inter-group influence occurs, however, effective genetic decoupling between
the groups occurs as soon as each of them becomes dominated by either of the two fittest
types. A change from one dominant type to another is not possible.
For γ0 < γ < γ1 (incomplete coarsening):

Coarsening occurs to some extent, but boundaries with curvatures below a threshold
remain.
For γ1 < γ (complete coarsening):

Genetic invasion always occurs and coarsening continues until all boundaries are flat
or one type dominates the entire population.

These results are confirmed in Fig. 5, which presents numerical simulations in the
disruptive selection case with several different values of γ, starting with the initial
conditions that are randomly created with small fluctuations in both population distribution
and genetic distribution. The effects of spatial separation on the domain coarsening
behavior in type difference are seen to vary for different γ. For γ < γ0, genetic decoupling
actually occurs and thus coarsening stops after groups become fully isolated from each
other (after about 200 updates), while for γ > γ1, coarsening continues even after the
isolation of groups and the whole population is eventually dominated by one type as
predicted. Although this particular example does not clearly show how boundaries behave
for γ0 < γ < γ1, we can nonetheless observe a distinct behavior in other simulation runs where
coarsening continues after the isolation of groups but eventually stops in a somewhat
frustrated shape. Figure 6 shows another example, where isolated groups are already
formed when disruptive selection events are induced. In this case, the difference between
the cases γ < γ0 and γ > γ1 appears earlier due to the pre-existence of the spatial separation.
The final outcomes are similar to those in Fig. 5.

7.  Conclusion

We have presented a theoretical analysis of evolutionary processes that involve
organism distribution, genetic distribution, and their interaction, for spatially distributed
populations with local mating and competition. Analyses and numerical simulations reveal
that the typical dynamics of population distribution variation is the formation of isolated
groups (spots or stripes). This process depends on several parameters, including the
reproduction rate and the survival rate of organisms and the ratio of mating and competition
ranges. We have also found that the population distribution dynamics are sensitive to the
shape of neighborhoods adopted. With well-defined competition neighborhoods groups
may form, while with Gaussian neighborhoods they do not. This result implies that the
spontaneously formed spatial population structure depends on the organismal behavior in
marking their territories.

Then we have examined the dynamics of genetic distribution in the presence of
disruptive selection against genetic intermediates. This results in symmetry breaking and
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domain coarsening in type difference. The genetic invasion processes may take place
despite the spatial separation generated by competition. The ratio of the mating and
competition ranges plays a crucial role in the dynamics. Our analysis predicts that there are
three distinct critical values of γ, at which the behavior changes from complete decoupling
to incomplete decoupling to incomplete coarsening to complete coarsening. In particular,
in the incomplete coarsening regime where γ ≈ 1 (RM ≈ RC), the coarsening of boundaries
between different types may remain in a frustrated shape. These results are confirmed by
numerical simulations. They may be verified by experimental observations in both
qualitative and quantitative ways.

There are a number of possible future extensions of the present model. We have
considered more complex genetics with multiple loci and/or multiple alleles (SAYAMA et
al., 2003). Another issue relevant to biological concerns is extending the fitness assignment
to a more general form. A small asymmetry between fittest types or small viability of
genetic intermediates may alter the model dynamics. Boundary shapes and behaviors could
couple to fitness variation. Our discussions may also be used as an analog of some self-
organization processes in physics that involve two or more order parameters, such as
clustering and magnetization of aggregates of mobile spins on a two-dimensional surface,
or pattern formation of chemical substrates in a reaction-diffusion system that involves
multiple distinct reaction processes.
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