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Abstract. Calcium ions are an important second messenger in living cells transmitting
signalsin the form of waves. It is now well established that these waves are composed of
elementary stochastic release events (calcium puffs) from spatially localised calcium
stores. Here we devel op amathematical model of cal cium release based upon astochastic
generalisation of the fire-diffuse-fire (FDF) threshold model for calcium release. Our
model retains the discrete characteristic of the FDF model (spatially localised stores) but
also incorporates a notion of release probability, viathe introduction of threshold noise.
It is possible to identify a critical level of noise defining a non-equilibrium phase-
transition between abortive and propagating waves. Thistransition is shown to belong to
the directed percolation universality class.

1. Introduction

Calcium signals in the form of sparks and propagating waves are observed in awide
range of cell types. Experiments have shown the stochastic nature of release events both
in systems based on the inositol (1,4,5)-trisphosphate (1P;) receptor (MARCHANT and
PARKER, 2001) and the ryanodine receptor (RyR) (CHENG et al., 1996). The importance of
stochasticity for the initiation and propagation of calcium waves has been a subject of
limited theoretical investigation. Notable exceptions are the work of KEIZER and SMITH
(1998) on stochastic RyR release sites in cardiac myocytes, and the work of BAR et al.
(2000) on stochastic | P channels.

Inthis paper weintroduce astochastic version of the FDF threshold model for calcium
release of KEIZER et al. (1998). One of the main advantages of our model is that it is
biophysically realistic and computationally cheap to solve. Simulationresultsare presented
for both a one and two dimensional cell model. We demonstrate that different noise
intensities can lead to a variety of different structures, including noisy travelling circular
fronts, spiral waves, target patterns and large scal e coherent periodic rhythms. Moreover,
a statistical analysis shows that the model exhibits a non-equilibrium phase transition
belonging to the directed percolation universality class.
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2. The FDF Threshold Model

The FDF model of KEIZER et al. (1998) was originally introduced as aminimal model
of spark-mediated Ca?* waves. In one dimension the model may be written in the form:
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where u(x, t) denotes the concentration of Ca?* ionsin the cytosol. Thefirst termin Eq. (1)
models alinear Ca?* pump which operates at arate 7,2 Ca?* puffs are triggered from the
release site at positions x = nd at times T,™. These release times are defined in terms of a
threshold process according to

"= inf{t|u(nd,t) >u,, u(nd,t)>0, TM">TM? +TR} : (2

where release events are separated by at least a time 1. The function n(t) describes the
shape of the Ca?* puff and is considered to be a rectangular pulse shape n(t) = O(t)O(1 —
t)/Twith duration T and strength o. It isconvenient to define arelease function a,(p), where
a,(p) =1if T,"=prandiszero otherwise. We now restrict the system so that rel ease times
occur on aregular temporal lattice. Choosing the refractory time as 7z = Rt for some R
Z we use the approximation

min(Rp)

2 (P) = O(Un(P) ~te) [t —tn(P-m)), (3

m=1

whereu,(p) =u(nd, p7). Thefirst term ontherightin Eq. (3) isasimplethreshold condition
for the determination of arelease event whilst the second term ensures that rel ease events
are separated by at least 1. Using the above restriction, the FDF model takes the simple
form

du+—--Ddu=2 Y a,(p)o(x-nd), pr<t<(p+r, (4
Ty T

with Green’s function G(x, t) = exp[-t/Ty — x?/4Dt]/ +/4rDt O(t). The dynamics for pr <t

< (p+1)7 may then be determined in terms of initial data u,(x) = u(x, pr) as

u(x,t):% > a(p)H(x-nd,t - pr)+(GDup)(x,t), (5)

nZ



A Stochastic Fire-Diuse-Fire Model of Ca?* Release 55

(@) (b)

Ca (uMxd/o)
1.2 |

Ca’* (uMsd/c)
13

w

Time (sec)
Time (sec)

0.8

~

-100 0

i -50 50
Distance (pm) L L) Distance (um)

Fig. 1. (a) Stochastic travelling wave in one dimension with the following parametersd = 2 um, D = 30 um?
s, 7=0.01s, 74=0.2 uM/s, u.d/o= 0.1, 7= 50T and 3 = 10. (b) Deterministic travelling wave with speed
s=100 um/s(the same parametersand 3 - ). Lurching pulses propagate both left and right from a central
sites, giving rise to a saw wave-like front. Regions between saw teeth are occupied by material with ahigh
density of Ca?*.

where H(x, t) = [;'G(x, t —s)ds and (G [ Up) (X, 1) = [,°G(X -y, t — pT)uy(y)dy. A closed
form expression for H(x, t) is given in CoOoMBES (2001). Compared to the original FDF
model the one we have described hereis computationally cheap to solve. The solution u(x,
p7) isasum of two termsthat are both amenabl e to fast numerical evaluation. In particular
the first term in Eg. (5) with t = pt depends on the basis functions H,(x) = oH(x —nd, 1)/
T which are fixed for all time. Hence, they need only be computed once. The convolution
operation arising in the second term may be performed effciently using Fast Fourier
Transform (FFT) techniques. Once again the FFT of G(x, 1) need only be computed once,
so the computational burden is shifted to the evaluation of the FFT of uy(x) and the
construction of G [ u,, as @‘1(9«*[6]9?[%]), where & denotes the FFT.

3. Stochastic Model

The FDF threshold model that we have described is easily extended to take into
account the stochastic nature of Ca?* release. Wetreat the threshold u, asarandom variable
and consider thereplacement u, — u. + & with some additive noiseterm &. The probability
that a,(p) = 1 and that there is arelease event is given by

rin(R.p)
P(a,(p) =1) = P(an(p) > tc) []P(un(p=m) <u) ©

m=1

X

for some probability distribution function P(u> u.) = f(u—u.). Fromthework of 1zu et al.
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Fig. 2. Stochastic dynamicsin two dimensions with the parameters from Fig. 1 and (a) 8 = 100 (intermediate
noise), (b) B =10 (high noise).

(2001), natural choices for the release probability functions are sigmoidal functions. Here
we choose

o1 Buc

()= i g it ™) (7
so that the probability of releaseiszerowhenu=0andtendstooneasu — «. Thestochastic
FDF model isdefined by Eq. (5) witha,(p) 0 {0, 1} treated asarandom variable. Numerical
simulationsof themodel illustratethat stochastic cal cium rel ease can lead to the spontaneous
production of calcium sparks that, under certain conditions, can merge to form saltatory
waves. All numerical simulationsstart from asingle activesite. An example of astochastic
travelling wave is shown in Fig. 1(a). In thelimit B — oo, the release probability function
becomesastep function and werecover our original deterministic model. A saltatory wave
in this deterministic case is shown in Fig. 1(b). Thus we interpret 8 as a parameter
describing the level noise.

The generalisation of our stochastic FDF model to two dimensionsis both natural and
straight forward by introducing a continuous spatial coordinate r O R? and a discrete set
of vectorsr, 0 R?, n 0 Z, indicating the positions of release sites. Since the puff duration
isvery small compared to 7z We have the useful approximationthat H(r, t) - G(r,t), where
G(r, t) = exp[-t/T4—r?/4Dt])/4nDt, with r = |r|. For simplicity we focus on a square lattice
of release sites, with lattice spacing d. A single active site is placed in the centre of the
square | attice at the beginning of simulations. It is possible to observe awell defined front
of activity for large values of 3 (low noise), moreirregular activity for intermediate levels
of noise and aform of array enhanced coherence resonance for large values of noise. This
leads to a high degree of synchronization between release events at different sites similar
to that observed in the work by HEMPEL et al. (1999). Some examples of typical structures
observed in the presence of intermediate and high noise are shown in Fig. 2.
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Fig. 3. (a) Thedistribution of survival timesat thecritical noiselevel 3, showingthat for larget thereisapower
law scaling of the form M(t) ~ 9. The slope of the graph is used to predict that 5~ 0.159, asis expected for
models in the universality class of directed percolation. (b) Plots of &(t) used in the determination of S,
showing that 3, lies between B; and £3,.

4. Directed Percolation

In common with many models which exhibit a non-equilibrium phase transition our
model supports waves which survive or eventually go extinct. Similar to the stochastic
model of calcium release proposed by BAR et al. (2000) we demonstrate that our model
belongs to the so-called directed percolation (DP) universality class. The DP model isthe
simplest model exhibiting a non-equilibrium transition (see HINRICHSEN (2000) for a
review). At some critical noise level the survival probability, IM(t), of awave is expected
to scaleasymptotically ast°with 5~ 0.159464. Weshall treat the effective noise parameter
[ as the one controlling the DP phase transition and denote the critical value of 3 at the
phase transition by .. To obtain a good estimate of the critical exponent ¢, it is useful to
consider the local slope of the survival probability curve by introducing the effective
exponent &(t) = In[M(rt)/M(t)]/Inr, whereInr isthe distance used for estimating the slope.
A plot of &(t) for various choices of 3 may be used to predict the critical value 8. A good
estimate of d can be obtained by extrapolating the behaviour of (t) tot — o and plotting
thelocal slopeasafunction of t%. Weplot &(t) for variousvalues of Bin Fig. 3(b), showing
that 3. ~ 0.47. The corresponding distribution of survival times (t) for the activation
process started from asingle siteis presented in Fig. 3(a). For our value of B, wefind 6~
0.159 suggesting that our model also belongs to the DP universality class.

5. Discussion

This work introduces a stochastic generalisation of the FDF model for Ca?* release.
Our simulation results demonstrate that the model capturesthe main qualitativefeatures of
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the experimentally observed calcium sparks and waves in a variety of cell types (CHENG
et al., 1996; MARCHANT and PARKER, 2001). One of the main advantages of our model is
that it is computationally inexpensive. The stochastic nature of the release events is
modelled by the inclusion of additive noise to the threshold. For high noise we observe
spontaneous Ca®* sparks and the possibility of global coherent signals in the form of
simultaneous and periodic release from all sites. For low noise Ca?* sparks can reinforce
each other and propagate as waves. A statistical analysis of the model shows a non-
equilibrium phase transition between propagating and non-propagating waves and that the
model belongs to the directed percolation universality class.

The computational simplicity of our model makesit ideal for exploring the stochastic
nature of Ca?* sparks and waves in fully 3D model cells.
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