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Simulation Study of Bacterial Colony with Multiplying Rods
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Abstract.  A microscopic model for a bacterial individual is proposed, and applied
investigation of the bacterial colony. B. Subtilis is considered as a sample, which is
regarded as a rod molecule moving and rotating on the substrate including the diffusive
nutrients. The model is analyzed by Monte Carlo simulations, and several patterns
observed in experiments have been generally reproduced.

1.  Introduction

Bacteria exhibit various colony patterns according to the substrate softness and
nutrient concentration though they are simple unicellular organisms (SINGLETON and
SAINSBURY, 1981). Particularly colony pattern of bacteria species B. Subtilis has been
vigorously studied from both experimental and theoretical viewpoints (FUJIWARA et al.,
1989; OHGIWARI et al., 1992; WAKITA et al., 1994, 2001; KAWASAKI et al., 1997;
MATSUSHITA et al., 1998). From the experimental studies, a morphological phase diagram
of colonies of B. Subtilis is determined by varying both the concentration of nutrient and
the substrate softness. The phase diagram is composed of five patterns, DLA-like, Eden,
DBM-like, concentric ring and homogeneous disk-like (OHGIWARI et al., 1992). Though
boundaries between these phases are somewhat ambiguous, their physical and geometrical
characters are clearly defined by parameters such as the roughness exponent.

In order to investigate these biological patterns and compare them with peculiar
patterns caused by physical factors, numerical simulations of the model equations based on
the reaction-diffusion equations have been studied recently (WAKITA et al., 1994; KAWASAKI

et al., 1997; MATSUSHITA et al., 1998; KOZLOVSKY et al., 1999). Result of these theoretical
studies revealed that similar colony patterns were reproduced and parameters in the model
equations were discussed. These models, however, are constructed from a macroscopic
viewpoint and thus detailed movement of each individual is disregarded.

In this paper we propose a microscopic model treating bacterial individual and apply
it to formation of the bacterial colony. B. Subtilis is regarded as a rod molecule which
moves and rotates on the substrate including diffusive nutrients. Though the rods basically
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move and rotate randomly, they also choose one of two modes, “run” or “tumble”,
depending on the amount of the surrounding nutrient. The rod molecule ingests the nutrient
and grows until the rod divides into two new individuals.

We study this multiplying rod model by means of Monte Carlo simulation. By varying
the substrate softness and nutrient concentration, growth of the colony in various environment
is investigated. In the result of the simulation, several patterns observed in experiments
have been globally reproduced. From investigating a diffusion coefficient of the bacteria,
their activity in DBM-like and disk-like colonies are microscopically determined.

2.  Model

We consider a hard-rod system in two dimensions as is shown in Fig. 1. A length of
the rod lb grows from 6a to 14a where a is a unit length corresponding to the radius of the
rod. The rod which represents B. Subtilis moves ahead and rotates continuously on the
surface of agar plates (BERG, 1992). The mimic bacteria ingests the nutrient and grows until

Fig. 1.  Bacteria regarded as hard rod diffusing on an agar plate. The diffusion coefficient of the rod depends on
the number of surrounding rods within the gray area.
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the bacteria divides into two new individuals at lb = 14a. Therefore the number of rods
increases with the simulation step and will form a bacterial colony. In the colony, there is
a direct repulsive interaction between rods. The potential energy between the rods i and j
is represented as
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where rij is the distance between central segments of rods i and j. Since u(rij) includes a
softcore term (2a/rij)

12, the rods can push and shove each other (WAKITA et al., 2001). As
a result, more active rods push other rods. This biological repulsion corresponds to a “short-
range repulsive chemotaxis” (KOZLOVSKY et al., 1999).

The movement of the rod is classified as passive or active (BERG, 1992). A passive
movement is caused by a fluctuation of surrounding mediums and thus it depends on the
temperature T and the viscosity of the mediums. From the Stokes’ law, the mean displacement

δP
2  = 2∆τk T fB xy/  and the mean rotational angle θP

2  = 2∆τk T fB r/  of the rod

for a unit time ∆τ are adopted (BERG, 1992). Here fxy = 3πηlb/ln(lb/a) is the viscous drag
coefficient of the rod moving at random and fr = πηlb

3/3(ln(lb/a) – 1/2) is the rotational
frictional drag coefficient of the minor axis. kB is Boltzmann’s constant. η  is the coefficient
of viscosity of the surrounding mediums, which depends on not only the concentration of
agar but also the lubricant such a surfactant secreted by the bacteria. An increase in the
amount of lubricant decreases the friction between the bacteria and the agar surface. From
a reaction-diffusion model for a bacterial colony including a time-evolution equation of a
lubricant, Kozlovsky et al. suggested that the coupling of the bacterial motion to the
lubricant should be replaced by a density-dependent diffusion coefficient for the bacteria
(KOZLOVSKY et al., 1999). We adopt the suggestion into our model and define the
coefficient of viscosity η = η0/s(n) for each rod i, where n is the number of surrounding rods
which are less than 10a from the rod i. Since the function s(n) is regarded as an increasing
function, we assume s(n) = 2n × 0.01 + 0.99.

On the other hand, the active movement of a bacteria is driven by rotation of several
flagellar filaments. When these flagella turn counterclockwise, they form a synchronous
bundle that pushes the body steadily forward; this mode is said to “run.” When they turn
clockwise, the bundle comes apart and the flagella turn independently. As a result, the
bacteria moves in a highly erratic manner; this mode is said to “tumble.” In our model, a
mimic bacteria also moves due to either “run” or “tumble” mode. In the “run” mode, a

bacteria goes ahead with the mean displacement δA
2  = 2∆τA fb a/ , where the value Ab

represents an “activity” of the bacteria, which equals the amount of nutrients ingested by
the individual. fa is a viscous drag coefficient moving lengthwise written as fa = 2πηlb/
(ln(lb/a) – 1/2). In the other mode, “tumble”, a bacteria randomly turns clockwise and

counterclockwise by the mean rotational angle θA
2  = 2∆τA fb r/ .

The alternative modes are determined by a parameter µ which relates to the recent
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memory for an amount of nutrients near a bacteria (MACNAB and KOSHLAND, 1972). The
parameter µ is defined as µ = (1/nµ) i

n
n i n= − −∑ 1

µ ϕ ϕ , where ϕn is the amount of nutrients near
the bacteria at the simulation time step n. A period of keeping the memory nµ is used as nµ
= 5 in the simulation. If µ > 0, the bacteria will switch its movement from “tumble” to “run”
and vice versa. In the result, the bacteria automatically moves towards a nutrient-rich area.
Therefore a coupling of these two modes depending on a change in the concentration of
nutrients causes “chemotaxis towards nutrient” which is just a biological feature (ADLER,
1966; SINGLETON and SAINSBURY, 1981).

A quantity of the nutrient in the thin agar plate is represented by a mesoscopic value
φi,j at the intersecting point on a triangular lattice. Each φi,j varies due to the diffusion of
the nutrient under the constraint of a Ginzburg-Landau expanded free energy V,
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The first term in Eq. (2) is a diffusion term and the parameter α corresponds to the diffusion
coefficient. The second term acts on suppressing a variation of φi,j when the parameter β
> 0. In addition to the potential energy V, the ingestion by bacteria also affects the diffusion
of the nutrient.

3.  Simulation and Results

We prepare a two-dimensional square space 2048a × 2048a which roughly corresponds
to a 1 mm × 1 mm dimensional agar plate and initially place a few rods on the center of the
space. We also set a value of the nutrient homogeneously in the agar plate as φi,j = φ0. In
a Monte Carlo trial, a rod is chosen randomly. For a passive movement of the rod, its center

of mass and orientation are shifted randomly subject to δP
2  and θP

2 . These trials are

accepted or rejected according to the Boltzmann weight exp(–∆U/kBT), which is calculated
from a change of the total potential energy U = ∑i≠j

Nui,j and the temperature of the system
T.

Likewise, an active movement of the rod randomly goes ahead and rotates subject to

δA
2  and θA

2 . The acceptance of these trials are judged by the Boltzmann weight

exp(–∆U/Ab), which does not depend on the temperature of the system but the activity of
the bacteria Ab.

While the rods move on the off-lattice space, the nutrients diffuse on a triangular
lattice whose unit length is a. In a Monte Carlo trial, an intersecting point φi,j is chosen
randomly and a part of the φi,j moves to one of the six nearest neighbor points in the
triangular lattice. The trial is accepted or rejected according to the Boltzmann weight
exp(–∆V/kBT) where ∆V is a change of the potential energy V during the trial. In addition,
the nutrient is ingested by bacteria and decreases.
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Simulations are run up to 1~3 × 104 Monte Carlo steps (MCS) at various coefficients
of viscosity η0 = 5~500 and initial quantities of the nutrient φ0 = 4~40. Parameters chosen
are kBT = 1, ∆τ = 1, α  = 1 and β = 1. In the result of the simulation, we obtain typical colony
patterns shown in Fig. 2. At nutrient-poor and solid agar medium, the bacterial colony
shows the DLA-like pattern (Fig. 2(G)). Using a box count method, the fractal dimension
of 1.763 is obtained in a good linear regression line, which almost corresponds to the
experimental result 1.716 (FUJIKAWA and MATSUSHITA, 1989). Since its size corresponds
to 1 mm × 1 mm, the result shows a pattern in a small region at the center of the DLA-like
pattern observed by experiment. Therefore our result of the fractal dimension is slightly
higher than the experimental one. Eden-like pattern appears in the region of nutrient-rich

Fig. 2.  Patterns of bacterial colonies for various values of initial quantities of the nutrient φ0 and coefficients
of viscosity η0; (η0, φ0) = (A) (500, 40), (B) (50, 40), (C) (5, 40), (D) (500, 10), (E) (50, 10), (F) (5, 10), (G)
(500,4), (H) (50, 4), (I) (5, 4). The number of bacteria in each colony is 10000–20000.
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and solid agar medium shown in Fig. 2(A). In the region of solid agar medium, movement
of rods are restricted and growth of the colony is controlled by an extension and a division
of the rods. On the other hand, rods actively move at soft agar medium and form DBM-like
(Fig. 2(I)) or homogeneous disk-like colony (Fig. 2(C)). To investigate the activity of the
rods at each environment, we calculate a diffusion coefficient of the rods D = 〈δ2〉 /4τ shown
in Fig. 3. Here 〈δ2〉  is a mean-square displacement of the rods during the time τ. Though the
diffusion coefficient D is almost unchanged for 1/η0 > 50, it rapidly increases at 1/η0 ≤ 50.
This result qualitatively corresponds with the experimental observation (OHGIWARI et al.,
1992).

4.  Summary

In order to study the morphology of bacterial colonies microscopically, we performed
Monte Carlo simulations of multiplying rods model for various values of the viscosity of
the surrounding mediums and the nutrient concentration. We obtained the same colony
patterns that are found in the experimental studies except for a concentric ring-like pattern
(OHGIWARI et al., 1992). Though this microscopic model is proposed with respect to B.
Subtilis, it is possible to apply our model to another bacteria species such as E. coli by
changing microscopic specifications of the model (BUDRENE and BERG, 1991). Hence our
rod model is useful for studying how the microscopic specifications of bacteria affects

Fig. 3.  The diffusion coefficient of bacteria D versus coefficient of viscosity η0 without any lubricant for φ0 =
4, 10, 40.
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unique behavior of the bacterial colony. BEN-JACOB et al. (1994) propose a mesoscopic
model for the formation of bacterial colonies, called “Communicating Walker model”,
which incorporates random walkers representing aggregates of bacteria (BEN-JACOB et al.,
1994). Though this model seems to resemble our model, it is actually different in a sense
that the movement of bacteria in our model is considered individually.

There is a report on the concentric ring-like pattern based on the reaction-diffusion
type model in the two-dimensional space (MATSUSHITA et al., 1998). As a matter of fact,
the concentric ring is a three-dimensional structure which is constructed by accumulating
disks of different sizes (WAKITA et al., 2001). Therefore, it is hard to realize the concentric
ring-like pattern by means of the two-dimensional model. Although our model is also
studied in two dimensions, it is more easily extended for studying three dimensional
behavior than the reaction-diffusion type model.

The authors wish to thank Dr. Y. Yamazaki and K. Doi for their helpful advices.
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