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Abstract.  Some mathematical models have been proposed to elucidate the mechanism by
which an oscillating reaction is generated as a complex system. Brusselator and Oregonator
do not only describe oscillating reaction systems but also reproduce multiple periodic
oscillations, burst waves and drawing synchronization. All theoretical researches on these
models did not give each differential equation with consideration of the strict
correspondence to the system of reactions. Then, we did not adopt a theoretical framework
of physics but a mathematical one in which it is possible to survey exhaustively although
most of the elements might look apart from real chemical systems. We have been
interested in the problem of the least number of chemical species and elementary reactions
that can generate the reaction. In this study, we mainly analyzed two chemical species that
are not supplied continuously in Continuous-flow Stirred Tank Reactor (CSTR). We have
demonstrated that the oscillating reaction systems must be described by more than one
reaction formula that contains formulae for the autocatalytic reactions with physical
consideration of the equilibrium space of its rate equations. We have contemplated the
mathematical meaning of the autocatalytic reaction and showed that a positive feedback
system gives it; therefore, an oscillating reaction can be produced by a complex feedback
system.

1.  Introduction

In reaction kinetics, a reaction in which the concentration of the components in the
system changes periodically as the reaction progresses is called an oscillating reaction. The
Bray-Liebhafsky reaction (BRAY, 1921) and some oscillating reactions have been identified
experimentally (LEHNINGER et al., 1993). However, it is difficult to classify most of these
systems of reactions into minimal elements. For example, the Belousov-Zhabotinsky (BZ)
reaction is generated by a Ce ion-malonic acid-bromic acid system. It is believed that more
than 10 reactants are contained in the system of reactions, including intermediate products
such as malonic acid, bromic acid, Ce3+, Ce4+, bromo-malonic acid, bromous acid, bromous
acid radical, hypobromous acid, bromine and bromine ion (TYSON, 1985). They have
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minutely studied elementary reactions that compose the BZ reaction and calculated their
rate constants. A typical reaction is the FKN mechanism (FIELD et al., 1972) that is
summarized as 10 elementary reactions. However, there are many points of uncertainty, for
example admission of the radical reaction, Fe(IV) ions, and the reactions involving organic
compounds. These mechanisms have been modified in many studies (YAMAGUCHI, 1991).
The BZ reaction is known as a complex system that consists of multiple elementary
reactions.

It is difficult for a reaction formula to describe the system of the BZ reaction as an
oscillating reaction. Many studies have examined the elementary reactions that compose
systems of the oscillating reaction, and systems of differential equations have been devised
as models for the generation of chemical oscillation. More than 60 models have been
proposed to describe the oscillating reactions systems (YAMAGUCHI, 1991). The Lotka-
Volterra model (LOTKA, 1920) is one of them, which corresponds to a system of irreversible
reactions in an open system;
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where the concentration of reactor A is assumed to be constant. The substrate A reacts on
the intermediate X and changes to X, and X reacts to the intermediate Y and changes to Y.
The products X, Y react as catalysts in each reaction. We can regard these reactions as
processes for auto-duplication of those catalysis. The process accompanying this
autocatalysis is called an autocatalytic reaction.

Previous studies have proposed that the oscillating reaction system involves both an
autocatalytic process and a feedback control process (BLANDAMER, 1975). According to
the method predicated on elementary reactions (HORIUCHI, 1956), TAKADA and KITAOKA

(2001) composed a first-order simultaneous system of differential equations as a system of
rate equations for all concentration variables of species in the system of elementary
reactions. They proved two mathematical theorems to demonstrate the necessity of these
processes in some conditions. Although their study might focus onto a system of the
mathematical models regardless of the reality for reaction systems, their models covered
real chemical reactions thoroughly so that complex systems also came into view. Moreover,
it seems to be important to examine the role of mathematical models in chemical reaction
kinetics exhaustively because the models are relatively easy to deal with from the point of
view of exotic phenomena, the qualitative theory of differential equations in general, and
catastrophe theory in particular. Our work is also one of the mathematical studies.
Although we use the mathematical word “equilibrium” in this paper below, its meaning is
different from “equilibrium” on thermodynamics as mentioned in the beginning of
Appendix.

Definition  Let a phase space to be Rn, and smooth functions to be fj ( j = 1, 2, ..., n). A
simultaneous system of differential equations for variables x1, x2, ..., xn ∈  Rn:
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this space is static in the direction of xj on the account of Eq. (2). Thus, the representation
point would stop in a direction of xj if it attained the equilibrium space for the variable xj.
However, this space does not guarantee stability in the other directions.

In this paper, we also conform to their scheme (Appendix). We review our physical
consideration as follows, and give an expression for the process as a feedback system.

1. We must compose multiple elementary reaction formulae as an oscillating
reaction system according to an analytical solution of the system of rate equations.

2. The oscillating reaction system involves one or more autocatalytic process in
Continuous-flow Stirred Tank Reactor (CSTR).
CSTR is used as the reaction container, and it satisfies the conditions of an open system.
Some concentrations of the elements are maintained constant in the container with external
supply of solutions such as malonic acid, bromic acid ion, and hydrogen ion solutions.
Moreover, we can apply external periodic perturbations, and the CSTR enables strict
analysis of oscillating reactions such as the BZ reaction, which seems to be generated by
a chaos system (DOLNÍC et al., 1989; NOSZTICZIUS et al., 1989).

After the review, we show that a positive feedback system cannot produce the
oscillating reaction, and the reaction system involves multiple positive feedback systems.

2.  Historical

TAKADA and KITAOKA (2001) proved two theorems for dynamical consideration of an
autocatalytic reaction in systems of the oscillating reaction. Here, we give those theorems
and review their clime on the autocatalytic reaction. We also provide a dynamical
interpretation of the necessity of an autocatalytic reaction in systems of the oscillating
reaction, which is based on those mathematical theorems.

2.1.  Theorems
One of those theorems was a theoretical suggestion that a certain equilibrium state was

reached for any initial conditions if the reaction system could be described by a reaction
formula. Herein, we define the restricted phase space by a half-interval R+ = {x|x ≥ 0, x ∈
R} on any variables where R is a set of all real numbers. It corresponds to those
concentration variables that give positive values.

Theorem 1  Let coefficients α , β, ai, bj be positive values (i = 1, ..., n; j = 1, ..., m) and q
∈  N (natural number). In restricted phase space spanned by variables x1, ..., xn, y1, ..., ym,
z ∈  R+ that compose a simultaneous system of differential equations with (m + n + 1)
unknowns, a solution of
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asymptotically and monotonously converges for any initial values.

We have shown that a solution of the system of rate equations (3)–(5) monotonously
converges on an equilibrium point for all initial values in accordance with Theorem 1. Here
the monotone means that a first differential with respect to each concentration variable ẋ1 ,
..., ẋn , ẏ1, ..., ẏm , ż  gives a constant sign along each orbit as a solution. We could also
understand that the equilibrium space z = 0 was a set of singular points that did not give
minimal points of the potential function for a representation point in the phase space
R+

n+m+1. Thus, we concluded that the equilibrium space z = 0 was not stable.
We have also proved the other theorem on a manifold as the equilibrium space as

follows. This is theoretical evidence that it is impossible for any pair of densities for non-
provided chemical species to oscillate in CSTR without any autocatalysis.

Theorem 2  The following algebraic curve L(y, x) = 0 is univalent for y on y, x ∈  R+.
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2.2.  Dynamical interpretation of Theorem 1
Let the reactants be X1, ..., Xn, products Y1, ..., Ym and an autocatalytic specie Z.

Concentration variables of all chemical species in a reaction formula

  

a X a X qZ b Y b Y q Zn n m m1 1 1 1 1 8+ + +
 →
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with auto-catalysis could be described by the rate equation system (3)–(5) under a
definition of rate equations in the Appendix (q ∈  N). If an initial condition was z = 0, the
reaction formula (8) would not contain autocatalytic species and this reaction formula
could describe a general reaction without autocatalysis.
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Theorem 1 offered a dynamical analysis of the system of rate equations (3)–(5). We
developed this theorem for asymptotical monotone convergence of the representation point
controlled by the system of equations. Solutions for the system of differential equations
(3)–(5) did not form a periodical variation for any components, and they asymptotically
converged on a point in the equilibrium space (Fig. 1).

A concentration of the components changes periodically in systems of the oscillating
reaction. We could distinguish whether the system of rate equations described the oscillating
reaction system by an analysis of the existence of the periodical solution for the system of
differential equations. Theorem 1 showed that no component in a solution for the system
of rate equations formed a periodical variation without autocatalysis. Therefore, we could
suggest that an oscillating reaction was not produced by an elementary reaction. We believe
that the oscillating reaction requires a system of reactions that contains more than one
elementary reaction. Actuary, some reaction systems are known as mechanisms to generate
the oscillating reaction, that are composed of plural elementary reactions such as Brusselator
(BLANDAMER and MORRIS, 1975) and Oregonator (TYSON, 1985).

Based on the above, in the next chapter we consider a system of rate equations
composed of plural reaction formulae without autocatalysis.

2.3.  Dynamical interpretation of Theorem 2
One of oscillating reactions is the BZ reaction. It is generated by a mixture of four

inorganic substances. We can observe that the mixture takes on blue and red colors
periodically and alternatively. It derives from a particular material (an iron ion) that
changes between two states (YOSHIKAWA, 1992). Similarly, for Theorem 2 we have
assumed that more than one concentration variable changes between two states periodically
in phase space spanned by all concentration variables in the oscillating reaction system.

Fig. 1.  This figure presents an example of the equilibrium space A – B = 0 and the trajectory of solutions for
differential equations (3)–(5) with the conditions of m = n = 1, α  = β and a1 = b1 = 2.
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Specifically, we have assumed that the representation point for the system of rate equations
is in the same state only if it belongs to a stable, simply connected equilibrium space in the
phase space that is composed of all concentration variables x1, ..., xn (∈ R+), and it
periodically moves between two spaces in the oscillating reaction system. We then make
the following assumption:

Assumption 1  Any concentration variable in the system of rate equations periodically
changes with the transition of the representation point between two stable equilibrium
spaces that are not simply connected, which describes the oscillating reaction system.

We noted the number of stable equilibrium spaces that are not simply connected in order
to examine the transition between two stable equilibrium spaces, and analyzed the “form
of the equilibrium space”. However, it is generally difficult to analyze the structure of the
equilibrium space for n-variables in phase space R+

n. Here, we analyze the structure of the
two-dimensional cross section that is defined by all pairs of concentration variables with
the assumption of continuity of the equilibrium space.

Assumption 2  Let any pair of concentration variables for chemical species be variable, and
the others be adiabatic constants.

This assumption corresponds to an analysis on variation process for any pair of chemical
species that is not provided continuously into CSTR without an autocatalytic reaction.

In a reaction system composed of more than one elementary reaction formula without
autocatalysis, an equilibrium space ẋ j  = 0 for concentration variables xj of chemical
species Xj ( j = 1, ..., n) is given as
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by Eqs. (A.1), (A.2) and Appendix. If we observed any pair of concentration variables xi,
xj (i ≠ j), we could describe a two-dimensional cross section of the equilibrium space as Eq.
(6), assuming xi ≡ x, and xj ≡ y. That is, Eq. (6) expresses the two-dimensional cross section
of the equilibrium space for a concentration variable of the chemical species Y without
autocatalytic species. We compared these cross sections with the equilibrium space
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with the concentration variable of an autocatalytic specie in Eq. (8). Although all
coefficients for the variable xj (=y) in Eq. (6) were negative, positive coefficients were
added in Eq. (10). Then, we could believe that the autocatalytic reaction gives the following
mathematical effects.
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1) A parallel transfer of the orbit closure to positive region in phase space (Fig. 2(a))
2) Multi-valued algebraic curves for the variable with non-degenerate singular

points (Fig. 2(b)).
Otherwise, two-dimensional cross sections (6) for any variables on the equilibrium

space (�R+
n) were univalent in accordance with Theorem 2. Hence, there were not two or

more stable partial equilibrium spaces that were not simply connected. The system of rate
equations without autocatalysis did not have a periodic solution with transition between
two stable equilibrium spaces under Assumption 1–2. We conclude that no pair of densities
for non-provided chemical species changes periodically in a CSTR that has no autocatalytic

Fig. 2.  These figures show two-dimensional cross sections of the equilibrium spaces (11). (a) This figure
consists of algebraic curves F(z, x) = 0 with the condition of u = 0, v = z3 + 6z + 10z, w = x, and with u = 12z2,
v = z3 + 6z + 10z, w = x. (b) This figure consists of algebraic curves F(z, x) = 0 with the condition of u = 0,
v = z3, w = x, and with u = z2, v = z3, w = x.

(a)

(b)
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reaction. It is suggested theoretically that an oscillating reaction is not generated by those
reaction systems.

3.  Our Proposition

We give an original proposition as an expansion of Theorem 2. This proposition also
gives a single-valued manifold as the equilibrium space. This is theoretical evidence that
no pair of densities for non-provided chemical species can oscillate in CSTR with an
autocatalytic reaction.

3.1.  Propositions
The following theorem on analytics was useful in proving that a graph of two

monotonous functions with different signs of derivation intersects in a bounded closed
interval.

Intermediate value theorem  A function f ∈ C0[s1, s2] with f(a) ≠ f(b) gives all values
between f(a) and f(b).

The following Proposition was obtained by this theorem. Our proposition provides
theoretical evidence that no pair of non-provided chemical species produces an oscillating
reaction in CSTR with an autocatalytic reaction.

Proposition  The algebraic curve F(z, x) = 0 is univalent for z on z, x ∈  R+.
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3.2.  Proof for our proposition
We choose any real number ζ  ∈  R+. The number of intersections between x = ζ  and

the algebraic curve F(z, x) = 0 agrees with the number of solutions to the algebraic equation
Fζ(z) ≡ –F(z, ζ) = 0. The number of solutions to this equation also agrees with the number
of intersections between the curve w = Fζ(z) and the line w = 0.

Now we define
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where e1 and e2(k) are positively definite for any k because of condition (12) and ζ  ∈  R+.
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The Fζ(z) can be rewritten with the constant e1 as
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If z were equal to 0, the polynomial Fζ(z) would have a negative sign; that is, Fζ(z) = –e1
≤ 0. A partial derivation of the polynomial Fζ(z) is the following expression.
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(i) If the first term on the right side of Eq. (15) is more than the absolute value of the
second term I(z) > |II(z)| for any z ≤ q(b1

–ζn + b0
–)/(q+1)(b1

+ζm + b0
+), this partial derivation

is a positive value because of the inequality of the coefficient at the first term ke2(k) > 0,
of the coefficient at the second term (b1

+ςm + b0
+) > 0 and z ∈  R+. In this case, Fζ(z) is a

strictly monotonous and increasing function; that is, the curve w = Fζ(z) increases
monotonously (Fig. 3). The function Fζ(z) diverts as z goes to infinity because the
coefficients for z on the polynomial (14) are positive. The function Fζ(z) is one of the
elements that belong to the set of continuous functions C0[0, ∞); therefore, the curve w =
Fζ(z) and the line w = 0 intersect at one point in accordance with the intermediate value
theorem.

(ii) If the first term on the right side of Eq. (15) is not more than the absolute value
of the second term I(z) ≤ |II(z)| for any z < z* ≤ q(b1

–ζn + b0
–)/(q+1)(b1

+ζm + b0
+), the partial

Fig. 3.  This figure presents the graph of w = Fζ(z) with the condition of I(z) > |II(z)| for any z ≤ q(b1
–ζn +

b0
–)/(q+1)(b1

+ζm + b0
+) (the curve (i)) and I(z) ≤ |II(z)| for any z < z* ≤ q(b1

–ζn + b0
–)/(q+1)(b1

+ζm + b0
+) (the

curve (ii) where z* is the minimal point for this algebraic curve. This value is given by the solution to the
equation I(z) + II(z) = 0.
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derivation is negative for the interval [0, z*) and positive for any z ≥ z* because the
polynomial II(z)/zq is linear (Fig. 3).

First of all, Fζ(z) is a strictly monotonous and decreasing function in the interval [0,
z*). Thus, the curve w = Fζ(z) decreases monotonously for this interval. Then, the function
Fζ(z) gives the minimum value at the right end of this interval z = z*. Thus, the procedure
for both ends of this interval is (0 ≥ e1 =)Fζ(0) > Fζ(z*). The function Fζ(z) is one of the
elements that belong to the set of continuous functions C0[0, z*); therefore, this function
does not give zero value in accordance with the intermediate value theorem. The curve w
= Fζ(z) and the line w = 0 do not intersect at any point in the interval (0, z*).

In the other interval on z ∈  R+, Fζ(z) is a strictly monotonous and increasing function.
That is, the curve w = Fζ(z) increases monotonously for any z ≥ z*. The function Fζ(z) gives

Fζ(z*) < 0 < lim
z→∞

Fς(z) = ∞ at boundaries of this interval [z*, ∞). The function Fζ(z) is one

of elements that belong to the set of continuous functions C0[z*, ∞); therefore the curve w
= Fζ(z) and the line w = 0 intersect at one point for the interval (z*, ∞) in accordance with
the intermediate value theorem.

In either event, the curve w = Fζ(z) and the line w = 0 intersect at one point for z ∈  R+.
There is a solution to the equation Fζ(z) = 0, so the algebraic curve F(z, x) = 0 is univalent
for z on z, x ∈  R+. [Q.E.D.]

4.  Discussion

4.1.  Dynamical interpretation of our proposition
TAKADA and KITAOKA (2001) have claimed that it is possible for the autocatalytic

reaction formula in a system of reaction formulae to describe the oscillating reaction
system with the theorems mentioned above and their theoretical considerations (Table 1).
Actuary, the chemical oscillation could be described by solutions for some of the rate
equations such as Lotka-Volterra systems if there were autocatalytic reaction formulae in
a system of plural reaction formulae (SAITOH, 1998).

We were cautious in considering the origin of the oscillating reaction. We strictly
studied the conditions under which there were oscillating reaction systems in Table 1.
There is more than one autocatalytic reaction formula in the system of reaction formulae,

Table 1.  This table indicates conditions to describe the chemical oscillations. We can generate periodic solutions
for systems of rate equations with the condition marked “�” and vice versa. Proposed mathematical models
for the chemical oscillations had the condition marked “�”. We considered Theorem 1 and Theorem 2 to
be evidence for the conditions marked “×”.

Existence of autocatalytic reaction
in the reaction formulae

The number of reaction formulae

1 2 or more

In their absence × ×
Exist × �
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as in the examples mentioned above. We posed the question of the smallest number of
autocatalytic reaction formulae that could generate the oscillating reaction.

We also analyzed the variation process for any pair of chemical species, which was not
provided continuously into the CSTR. We considered the concentrations of any pair of
chemical species to be variable, and others to be adiabatic, as in Assumption 2. Our
proposition showed the structure of any two-dimensional cross section that was defined by
all pairs of concentration variables in the reaction system with an autocatalytic reaction
formula.

We could consider any equilibrium space ẋ j  = 0 for a concentration variable to be Eq.
(9) if we observed an ordinal system of reactions without the autocatalytic species, which
was composed of two or more elementary reactions (∀ j ∈  N). A two-dimensional cross
section of this equilibrium space was described by L(y, x) = 0 with the assumption of xi ≡
x and xj ≡ y. However, if we observed a system of reactions with the autocatalytic specie
Z, the equilibrium space on the concentration valuable z should be given as
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by Eqs. (A.1) and (A.2), because there were no autocatalytic species except for Z. A two-
dimensional cross section of this equilibrium space was described by F(z, x) = 0 with the
assumption of xj ≡ z, and xi ≡ x which was not a concentration variable for the autocatalytic
specie. Comparing the algebraic curve F(z, x) = 0 with L(y, x) = 0, the former (11) had
different signs of the coefficient for the first variable. The first term in Eq. (16) gave Eq.
(11) the positive term φ(x)zq for the first variable, although all coefficients in Eq. (6) were
negative. There were non-degenerate singular points along the algebraic curve F(z, x) = 0,
and this curve was univalent in the phase space R+

n according to our proposition. There
were no plural stable partial equilibrium spaces that were not simply connected, and the
representation point could not move between two stable equilibrium spaces under
Assumption 1–2. We believe that there are no orbit closures in the phase space R+

n, and it
is impossible to generate periodic solutions of the systems of rate equations for an
autocatalytic reaction and other elementary reactions. In the CSTR that has an autocatalytic
reaction, we concluded that no pair of densities for non-provided chemical species changes
periodically. It was suggested theoretically that an oscillating reaction was not generated
by this reaction system.

Thus, there is little probability that the oscillating reaction is caused by a system of
reaction formulae with an autocatalytic reaction formula. We believe that it is necessary to
possess two or more autocatalytic reactions in the system of reactions so as to generate the
oscillating reaction.

4.2.  Autocatalytic reaction as a positive feedback system
In Subsec. 2.3, we induced that a system of the oscillating reaction involves an

autocatalytic reaction with physical assumptions that limit the system of reactions. Here,
we consider and express the mathematical meaning of the autocatalytic reaction.
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According to the rate equation (3)–(5), we showed the equilibrium space for a
concentration variable of the autocatalytic specie Z in the chemical reaction (8) as Eq. (10),
whereas the autocatalytic reaction was a production process of the autocatalytic specie as
described in the introduction. The production of the autocatalytic process advances by
itself. Such a process is often described as a positive-feedback system (MORI and NAKATA,
1994).

In engineering, positive-feedback systems have been described by block diagrams as
in Fig. 4, where the variable x is an input (external) variable, z is an output (internal)
variable, H is a forward transfer function and G is a feedback element. These systems were
also expressed by the following functional equation:

H x G z z x H G z+ ( )( ) = = −( )( ) ( )−    .i.e.  1 17

We have supposed that the relation between the input and output is satisfied by dynamical
equilibrium for the system of differential equations, which describes the positive-feedback
process, only when we assumed the forward transfer function to be H(z) and the feedback
element G(z), where
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In accordance with Eq. (17), the equilibrium space of the process should be

Fig. 4.  This block diagram describes the relationship between input and output of the positive-feedback systems.
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This equilibrium space is homomorphic to the Riemann-Hugoniot manifold (POSTON and
STEWART, 1978) on the condition of q = 2 (Fig. 5). Equation (10) was also obtained by the
restriction of this equilibrium space as x = 0. The equilibrium space for the concentration
variable of an autocatalytic specie fit a subspace of the equilibrium space for an internal
variable in the feedback system. The autocatalytic reaction should be described by a
positive-feedback system mathematically if we assume one output variable in the system
to be the internal variable in differential equations that describe the system and construct
the equilibrium space for the variable with the relation between input and output of the
system.

In this paper, we have also made the theoretical suggestion that an oscillating reaction
is not produced by a system of reactions with an autocatalytic reaction, but by plural
autocatalytic reactions. Thus, a system of the oscillating reaction must be given by a
complex system consisting of the positive feedback processes. We believe that it will be
useful henceforth to transform the figure of networks (the block diagram) into the system
of differential equations. In contrast, we can obtain the dynamical system as the mathematical
model from the diagram.

The other side, we also showed evidence that the oscillating reaction could not be
given by reaction systems with an autocatalytic reaction formula as a positive feedback

Fig. 5.  This figure shows the Riemann-Hugoniot manifold. The representation point moves along the cross
section of this manifold, which is controlled by van der Pol equations (VAN DER POL, 1926), particular
Liènard equations. The point jumps into another subspace if it reaches an unstable equilibrium point, the
edge of the manifold (thick lines).
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system, which was our claim in this paper. We introduced the retardant time on block
diagrams for the feedback system and set a new expression for time variations by the output
of the system. We obtained differential equations that were induced by the expression of
time variations for input and outputs of the feedback systems with retardant time on some
definitions and assumptions (TAKADA et al., 2000). Family of the Liènard equation
(HIRSCH and SMALE, 1974) contained the differential equations that were induced by the
expression for negative feedback systems with retardant time although the family did not
contain the differential equation for positive feedback systems. These are non-linear
differential equations. The former deferential equations generate orbit closures on the
phase plane in the large. LEFSCHETZ (1946) proved that the Liènard equation has a periodic
solution with his geometrical consideration. The solution for the later differential equations
diverged to infinity with qualitative consideration of vector field produced by the differential
equations. We also concluded that the oscillating reaction system could not be described
by the reaction system with an autocatalytic reaction formula as a positive feedback system.

5.  Conclusion

We composed a system of rate equations for concentration variables of all kinds of
chemical species in the system of reaction formulae. We have solved the system of
differential equations and concluded that an elementary reaction could not generate the
oscillating reaction. We have analyzed the structure of the equilibrium space for the system
of rate equations, which describes a system of reversible reaction formulae without
autocatalysis. In this system of reaction formulae, we have concluded that the oscillating
reaction is not caused by concentrations for any pair of species that are not supplied
continuously into the Continuous-flow Stirred Tank Reactor (CSTR). We have also
analyzed the structure of the equilibrium space for the system of rate equations, which
describes a system of reversible reaction formulae using only an autocatalytic reaction
formula. We claimed that the system of the oscillating reaction involves an autocatalytic
specie and more than one autocatalytic reaction in the CSTR. In addition, the autocatalytic
reaction should be given by a positive feed-back system mathematically if we assume an
output variable of the system to be an internal variable in differential equations that
describe the system, and the equilibrium space for the variable should be constructed with
a relation between the input and output of the system. Therefore, we have proposed that the
oscillating reaction system involves multiple and complex positive feedback systems.

Appendix

If we assumed the system of reactions to be an ideal solution in pressure and thermal
equilibrium, a mass reaction law could be introduced with a definition of the thermodynamic
reaction rate (WATANABE, 1987). In recent years, some researchers have shown
experimentally that this law does not satisfy a certain solution (HESHEL, 1993; SAGARA and
YOSHIKAWA, 1997). However, we treat the system of reactions as an ideal solution and do
not attempt to equate a system of reaction formulae in a non-equilibrium state.

We define a system of reaction formulae that describes each elementary reaction on
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the basis of HORIUCHI (1956). Both sides of the reaction formulae are multiplied by the
continued ratio in which they react in the solution. We assume that all elementary reactions
are caused by chance, with the same probability, and all densities of chemical species
change at the same time in this system of reactions. Therefore, the rate equation for an
arbitrary concentration variable of a chemical species is obtained by the sum of all first
differentials for the concentration variable in each elementary reaction in which the
chemical species takes part. Thus, we can transform a system of reaction formulae to a
system of rate equations (HIROTA and KUWATA, 1972). We assume the whole of the
reaction formulae to be v1, v2, ..., vN, and a vector of reaction formulae to be v ≡ (v1 ... vN)
≡ {N-dimensional vector space spanned by reaction formulae v1, ..., vN}. We also assume
absolute values of stoichiometric coefficients for chemical species Xj ( j = 1, ..., n) in the
chemical equation for reaction formula νk ( k = 1, ..., N) to be mkj, rate constants of forward
and reverse reaction νk to be αk, βk, sets of indices of all chemical species in each side,
where there is the chemical specie Xj in the reaction formula νk, to be νk( j), and sets of

indices of all chemical species in those opposite sides to be ν k j( ) . A vector x ≡ t(x1, ..., xn)
is composed of concentration variables for all chemical species in the system of reaction
formulae. If we describe the incremental rate for xj in vk as
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then, with the addition of k as time as the number of reaction formulae, we could express
a system of rate equations for the concentration variable xj ( j = 1, ..., n) of the chemical
specie Xj in the system of reaction formulae as the following formula with tensor product:
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where 1(N;n) is N × n matrix of which all elements are 1. Experimenters may say that this
system of rate equations looks apart from real chemical systems because individual
elementary reactions are interpreted by 1st order differential equations in most of the
chemical reactions, where those inhomogeneous terms are linear or quadratic at most.
However, there is a good possibility that a chemical specie participates in plural chemical
reactions, simultaneously. Thus, we should study every possibility for reaction systems as
complex systems, exhaustively. Based on this system of rate equations, we discussed the
number of autocatalytic reactions in systems of the oscillating reaction in this paper.
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