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Abstract. In this paper, we propose a novel method of self-organizing formation. It is
assumed that elements are not connected to each other, and they can move in continuous
space. The objective isto arrange elementsin certain spatial pattern like acrystal, and to
make the outline of the group in desired shape. For this purpose, we proposed a method
by using virtual springs among the elements. In this algorithm, an element generates
virtual springs between neighbor element based on information how many other elements
exist in neighborhood with a certain radius. Although the elements interact locally only
by virtual springs, and they do not have global information at all, they form ashape much
larger than the sensory radius. By simulation study, we confirmed convergenceto atarget
shape from a random state in very high probability. This kind of algorithm gives a new
principle of self-organizing formation, and its simplicity will be useful for design of self-
assembling nano machines in future.

1. Introduction

There are various phenomenain which many identical elements make thewholeform
by self-organization. For example, in the growth process of a crystal, many atoms or
molecules form regular lattice structure according to the principle of free energy
minimization. Although atoms are very small and simple, when they aggregate, they make
asymmetrical crystal in amacroscopic scale. Form of aliving organismisalso aresult of
self-organization process. Beginning from fertilization, it makes a peculiar form by
dividing cells repeatedly and arranging them in a certain order. Primitive elements of this
processarebiological cellscontaining equival ent geneticinformation. The cellsdetermine
the form, through exchanging chemical substances. Although the behavior of a cell is
farther complicated than the atom in a crystal, there is a common process in which global
order of the system emerges from the cooperation of homogeneous elements influencing
locally.
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However, in the world of the artificial things, such kind of self-organization seldom
appears. It is because an artifact is usually designed along a certain purpose, and its form
and structure are optimized to realize desired purposes. However, in the artificial system
of the next generation, the self-organization processes will be applied more purposefully.
For example, for amachine in a nano scale, it is not realistic to pick a part and assemble
them one by one. Like a protein molecule, many elements must self-aggregate to form a
functional component (self-assembly). Self-organization is also important to realize self-
repairing artifacts. For instance, several modular robot systems capable of self-repair have
been considered recently. They consist of many homogeneous mechanical modules, and it
can restore itself by replacing a broken module by a new module (self-repair). In such a
system, it does not know beforehand which module will break. Therefore, the self-
organization algorithm in which the group of elements cooperates and forms atarget shape
is needed.

Formation processes of homogeneous elements can be classified roughly into the
following three classes.

A. Elementsarenot connected to each other, and they can movein continuous space.

B. Elementsareconnected to each other, and they are constrained to certain discrete
relative positions.

C. Elementsareconnected to each other, but continuous changeinrelative positions

isallowed.
Class A isasystem like aflock of birds or a school of fish, or agroup of mobile robots as
an artificial system. Class B is a system like a crystal or a snowflake, and its artificial
exampleisamodular robot. Class C can be found only in natural systems such as protein
aggregation or multi-cellular organisms.

Algorithms of self-organizing formation have been proposed for each class. For class
A, Y amashita proposed an algorithm to align a group of homogeneous mobile robotsin a
circle (Suzukl and YAMASHITA, 1999). An alignment algorithm based on nonlinear
reaction-diffusionisal so proposed (FUKUDA et al., 2002). M ethodsto control not agroup’s
form but the dynamic behavior of a group are also studied for class A (REYNOLDS, 1987;
SUGAWARA et al., 2000). For class B, a self-assembly algorithm for a modular robot is
proposed based on local connection style among modules (MURATA et al., 2001), and a
self-repair algorithm using hierarchical description of the robot shape is proposed for the
same modular robot (TOMITA et al., 1999; FLOCCHINI et al., 1999; WALTER et al., 2000).
About class C, although many models of devel oping organisms are proposed, it is thought
that an artificial hardware corresponding to this class does not exist yet.

In this paper, we assume that elements are not connected to each other, and they can
move in continuous space (class A). However, our target is like class B. Namely, the
objective is to arrange elements in certain spatial pattern like a crystal, and to make the
outline of the group in desired shape. For this purpose, as the simplest model which can
consider the size of an element, we proposed a method by using virtual springs among the
elements. In this algorithm, an element generates virtual springs between neighbor
elements based on how many other elements exist in the neighborhood with a certain
sensory radius. Although the elements interact locally by virtual springs, and they do not
haveglobal information at all, they form ashape much larger than theradius. By simulation
study, we confirmed convergenceto atarget shape from arandom state occursin very high
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Fig. 1. Self-organizing formation.

probability. Thiskind of algorithm givesanew principle of self-organizing formation, and
its simplicity will be useful for design of self-assembling nano-machinesin future.

2. Self-organizing Formation

2.1. Problem formulation

The objective of formulation problem is to arrange elements in predetermined order
without depending on their initial position and direction (Fig. 1). We assume properties of
the elements as follows:

*  All the elements have the same character.

*  When a distance between two elements is less than a sensory radius R, they
interact each other by avirtual spring between them.

*  The number of elements which exist in Ris countable.

2.2. Algorithm of self-organizing formation

We have developed an algorithm that utilizes the number of connection between
elements under the problem setup above.

2.2.1 Connection number and virtual spring

In the algorithm, virtual springs shall be generated to all the elementsthat exist in R.
We call the number of elementsin the circle with aradius of R, number of connection. For
example, elements a, b, c, d, ein Fig. 2 have connections 2, 4, 2, 3, 3, respectively.

Virtual springsused inthealgorithm are assumed to have alarge spring constant k. By
setting natural length of virtual springs| slightly smaller than R (i.e. 90% of R), atriangular
lattice is made among the elements (Fig. 2). This is regarded as “nominal” setting. We
determined the value of k and | by trial and error.
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Fig. 2. The number of connection and triangular lattice.

2.2.2 Tuning virtual springs

In the formation problem, we need to control not only the internal structure pattern,
but also the outline of the global structure. In order to do this, we changed characteristics
of the virtual springs. Namely, spring constant and natural length of a spring is defined by
the numbers of connection of the elements at the both ends of the springs.

For combinations of the number of connection existinthetarget form, spring constant
and natural length is set to their nominal values. In addition to them, we can separate
elements with a certain combination of the number of connection by setting the natural
length to a value bigger than R. Combination is canceled by separation, because springs
vanish when the element pushed out of R. The product of the spring constant and the spring
length can tune the strength of ejection.

We also put a probability P of existence to each virtual spring. By using the
probability, we can control frequency of the separation.

For example, in the situation of Fig. 3(left), assume that we want to separate a virtual
spring a-c or b-c, because the combination of the number of connection 2-5isnot included
in the target form. To do this, we can set the virtual spring 2-5 with large spring constant,
natural length and probability of existence compared with nominal springs. Asaconsequent,
spring a-c or b-c will be replaced by alarge spring, and it pushes the elements, and then
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Fig. 3. Breaking unnecessary bonds.

vanishes because it goes out of range. By introducing suitable combination of springs, we
can generate desired shapes.

3. Simulation

3.1. Simulation model

Elements move on atwo-dimensional space. Subscript i isan identification number of
the element.

From Fig. 4, equation of motion for the element i is

i
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where, position of the element q; is defined as a vector, n; is the number of connection of
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Fig. 4. Movement of element i.

elementsi. I dentification number of the element which existsin neighbor R of elementi is
denoted as j, and q;, n; are position and the number of the connection of the element j,
respectively. mis mass of the element, and c, k, ny s I -n, » d denote damper coefficient,
spring coefficient, natural length of spring, and friction coefficient, respectively. We
assume the friction force d q; and the additional force eq; to aggregate the elements to the
origin. These are the force proportional to the distance between the element and the origin
of the plane. These are added to increase the efficiency of convergence, but they are weak
enough so that the formation is not affected.

In this model, elements are basically “passive” without virtual springs, but become
“active” according to the force of virtual springs. This equation of motion isintegrated by
Euler method. Differential Eq. (1) isdiscretized and updateisperformed on all the elements
in every step. Outline of the whole procedureis as follows.

1. For al the element i,

(@) calculate distance between elements, and select the element j in R.
(b) For al theelementj inR,
i. by using n;, n;, determine kni_nj, Ini_nj and Pni_nj .
ii. generaterandom number rand(0‘1), andif rand < Pni_nj , apply theforce
of virtual spring.
2. Calculate new position and velocity of the element i by Euler method.

3.2. Triangle formation
Wesimulated the formation process of atriangle. We changed aset of parameterssuch
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Table 1. Virtual springs for triangle formation.

n - I']J- I(n‘-nl In,-nl I:)n,-nl
2-4 200 0 1
4-2 " " "
4-4 " " "
4-6 " " "
6-4
6-6
2-5 250 120 07
34 300 120 0.005
33 300 120 0001

Others 200 120 0.0001

as, spring constant, natural length, and generating probability according to combination of
connection number. For each set of parameters, formation processis simulated 1000 times,
and the rate of success and an average step number are evaluated. Here, throughout the
simulation we assumed m= 10, r = 5 (radius of an element body), d=2,c=2,e=0.3,R
=100, and | ;¢ | = 2 (initial velocity), where ;; has a random direction.

Asaresult, the best parameter set was selected for the number of elementsn =15 (see
Table 1) and it was applied to various size of triangles (n = 6, 10, 21).

3.2.1 Parameter tuning for triangle formation

Combinations n;-n; contained in the target triangle are 2-4, 4-2, 4-4, 4-6, 6-4, and 6-
6. Becausetheseare structural members, we put nominal property (K, ., =200, I, ., =90)
for them. R, -, (generation probability of the springs) is set to 1.

These springs are not sufficient to control the global outline shape of the system. We
need to add other kind of springs to reshape outline to the target shape. We introduced
springswith alarger spring constant and larger natural length to cut a specific unnecessary
connection (lower half of Table 1).

Frequency of breaking the connections that are not included in a triangle is also
important.

If the spring with the combinations such asn; = 4, 5, and 6, is generated for separation
in high probability, it will never converge. On the contrary, if the probability is too low,
then other formations easily appear. We found that moderate generation probability for 3-
3 and 3-4 is efficient to form atriangle.

Deadlock shapes usually contain obtuse vertices (120°), and the connection number
of them is 3. We, therefore, cut connectionsincluding n; = 3 in low probability. However,
since n; = 3 also appears during the desired formation process of atriangle, the probability
must be small enough. Combination 2-5 has a particular function. It gives an element
freedom of motion along the edge, instead of completely cutting it off. We set avery small
probability to all the other springs not contained in the above list. This is effective to
prevent deadlocks in general.
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Table 2. Simulation results by size of target.

Sze of target triangle 6 10 15 21
Successrate (%) 100 100 100 83.7
Sepsin best case 100 160 313 257
Sepsinworst case 31684 55774 42364 178253
Average 4423 7447 7662 27508
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Fig. 6. Histogram of steps to reach target (n = 15).

3.2.2 Simulation results

Simulation results are shown in Table 2 and Fig. 5. The rate of convergence was
evaluated by sizes of targets. We used the parameter set tuned for a triangle with 15
elements for all of them.

InFig. 6, the peak of the necessary step for convergence appeared in theleft of the plot
showsthat it is basically arandom walk process. It is a process without memory, because
the number of activation for each ruleislinearly increased against convergencetime (Fig.
7).

Sincethose simulationswere obtai ned by the parametersfor 15 elements, convergence
for 6 and 10 elements were worse. It will be improved if parameters are tuned according
tothat target size. Although for thetarget larger than 15, we need longer convergencetime,
therate of asuccessdid not get worse so much, sincethetarget shapeistheonly stable state.
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Fig. 7. Frequency of separation by spring 2-5, 3-4, 3-3 (n = 15).

3.3. Formation of other shapes

We applied the same algorithm to other shapes such as alinear |ladder and a hexagon.

For aladder, weassumen=15 m=10,r=5,d=0,c=2,e=0, R=100, and for a
hexagonn=19, m=10,r=5,d=2,¢c=2,e=0.3, R=100.

Combinations in the ladder are 2-3, 3-2, 2-4, 4-2, 3-4, 4-3, 4-4, and combinationsin
the hexagon are 3-6, 6-3, 4-6, 6-4, 6-6. K, ny In -n, and P -n, Were set to the same value
as 3.2. We designed other springs as shown in Tables 3 and 4.

By preliminary simulation, we succeeded in forming these shapesasis shownin Figs.
8 and 9. However, the tuning of the parameters was difficult, and the convergence was
much slower than the case of triangle. In order to improve the efficiency, we need to add
some springs to remove deadlock states.

4. Conclusion

In this paper, under the constraint that the elements locally interact with neighbors
within radius R, we proposed an algorithm to form a shape much larger than R by using
virtual springs, where, the properties of the spring were designed based on the number of
connection of the element.

Inthe proposed algorithm, it isnecessary to tune parametersfor the specific shape and
the specific number of elements. In order to obtain the optimal parameter automatically, we
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Table 3. The generating virtual springs for aladder.

ni'nj I(n‘-nj In‘-n] Pn‘-nI

2-3 200 90 1
3-2 " " "
2-4

4-2

3-4

4-3

44

2-5 250 120 07
Others 250 120 0.001

Table 4. The generating virtual springs for a hexagon.

n-n kr\—nJ Ir\—nl Pn‘—nl
34 200 90 1

4-3 " " "
3-6

6-3 " " "
4-6 " " "
6-4 " " "
6-6

2-4 250 120 0.7
2-5 250 120 0.7
33 300 120 0.0005

Others 300 120 0.0001

can use genetic algorithmsfor instance. However, sinceit isarandom processthat does not
have memory, it is difficult to drastically improve convergence speed. To extend this
algorithmweneedtointroduce someadditional propertiessuch asnonlinear characteristics
of the virtual springs and internal state of the element. For instance, by introducing the
state, it becomesasystem that has memory. By using the memory, we can not only improve
convergence but assemble hierarchical structures, and more complicated shapes will be
formed by such an extension.

As a future work, we need to prove that various formations are possible by this
algorithm that does not exist in natural crystals. We also plan to redesign the algorithmin
simpler form aiming at hardware embodiment by a cluster of small mobile robots. The
simplicity of the formation algorithm may also lead us to applications such as nano/
molecular machines such as self-assembling of DNA molecules (MAO et al., 2000;
TURBERFIELD et al., 2000).
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