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Abstract.  In this paper, on a simulation model of fish schooling considering predator’s
existence, we attempt an analysis of the form of school in which prey fish evades predator.
We consider an evolutionary model of the fish behavior, and discuss the mechanism of
schooling behavior when the school encounters with a predator. This paper then shows our
computer simulation of the prey-predator system on an artificial ecology where fishes and
a predator coexist, and reports well simulated prey behaviors, especially evading behaviors
of the predator with advantage of schooling. On the simulation, we give an informal
analysis of the transition of the form of fish school in which fishes have the evading
behaviors.

1.  Introduction

Most animals in groups, such as birds, fish and some colonial animals, maintain the
group without a leader. They have learned to group through an evolutionary process.
Grouping makes them many benefits, such as lower risk of predator, getting their food, and
so on. The collective behavior without leader occurs mostly in the animals in groups whose
ecological niche is low (e.g., PARTRIDGE, 1982; KREBS and DAVIES, 1993). The form of the
group can change flexibly for the animals so as to perceive a risk, and then, to escape from
it. In this paper, focus on the schooling behavior of fish, we propose a simulation model for
studying the form of school in which prey fish evades predator.

Fish, one of the typical species which gather in aggregates, have been studied by many
researchers, so as to elucidate the mechanism of the school behavior (e.g., AOKI, 1982;
REYNOLDS, 1987; HUTH and WISSEL, 1994; SHIMOYAMA et al., 1996; GUNJI and KUSUNOKI,
1997). Statistical approaches do not provide much elucidation for the mechanism. It is very
difficult to measure and quantify the movement of fish. In this research, we consider an
artificial life, model of the fish behavior, in a virtual aquarium on a computer, and then
discuss the mechanism of fish school behavior by making it acquire the school behavior by
evolutionary computation.

Some behavior models of fish on the basis of interaction underlying schooling are
proposed from an observational standpoint (e.g., AOKI, 1982; GUNJI and KUSUNOKI, 1997).
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The behavioral rules on the models are simplified to the two components of movement:
speed and direction, and the components are independent or, at most, related to the location
and heading of the neighbors. Schooling phenomenon is well simulated by the models.
They, however, do not consider an ecology with coexistence of prey and predator. Some
ecological models for coexistence of prey and predator have been reported by WARD et al.
(2001) and NISHIMURA (2000)

In this paper, we consider an ecology of predator and prey fish, and then enhance one
of the models for fish schooling with the ability to sense the predator’s approach. We, after
that, propose an evolutionary method for the acquisition of evading behavior against
predator which is recognized as an evolved schooling behavior. This paper then shows our
computer simulation of prey-predator system, and reports well simulated prey behaviors,
especially evading behaviors against predator with advantage of schooling. The behaviors
are comparable to real fishes in aquarium. On our simulation, we give an informal analysis
of the transition of the form of fish school when it encounters with a predator.

2.  Behavioral Models

In this research, we adopt a biological model concept by AOKI (1982), which is based
on the observational and empirical investigation of interaction of fish behavior with its
neighbors in the schooling phenomenon. Many behavioral models stand on Aoki’s model
(e.g., HUTH and WISSEL, 1992, 1994; INADA and KAWACHI, 1997; INADA, 2001). Aoki’s
model is, thus, considered to be a proper base for our research.

The concept of Aoki’s model, however, does not consider the existence of a predator:
i.e. no interaction between prey and predator. In this section, as the first step of this
research, we enhance the model so as to examine the evading behavior of prey against
predator. Our enhanced model enables us to discuss the orientational configuration for
determining evading behavior. This paper, and then, provides an evolutionary approach by
GA, as one solution for the discussion, in Subsec. 2.4.

2.1.  The basic behavior model for fish schooling
Firstly, suppose the following fundamental assumption (AOKI, 1982) for all of our

models:
Assumption 1

1. A 2-D world is assumed.
2. Time is quantized, and the movement of individuals determined at intervals of ∆t.

Decision is independent of the previous step.
3. The movement of individuals is represented by two components: speed and

direction, which are stochastic variables. Speed and direction are mutually independent.
4. Interaction between individuals are restricted to the directional component. The

velocity component at any time is, thus, determined independently of other individuals.
On the basic model, movement of an individual has four basic behavior patterns:

avoidance behavior, move with a high parallel orientation, biosocial attraction, and
searching behavior. An individual selects one from these behaviors based on the distance
between the individual and its neighbors. Each of the basic behaviors has a range, and the
behavior is selected by reason that the neighbor appears in the range. There are also four
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ranges: avoidance area, parallel area, attraction area, and searching area. Figure 1 shows
the ranges of the basic behavior patterns for a individual (black one in the figure). Let us
suppose that no individual can see the outside of attraction area, that is, the sensory field
of individual is composed of avoidance, parallel, and attraction areas. We now provide
definitions for determination of behavior of individual i (i = 1, ..., n) in the following
sections.

2.1.1  Decision of the direction of movement (normal mode)
Let i and j be individuals, and suppose that j lies in the neighborhood of i, and i reacts

to j (j is called reference individual for i). As mentioned above, the movement of i is
composed of direction and speed, and let di(t) be the direction of i at time t. On the basic
model, di(t + ∆t), is defined as follows:

d t t d t ti i ij+( ) = ( ) + ( ) + ( )∆ β β0 1,

where βij(t), distinct turning angle of i for j, is determined by any of the following equations
according to which area of i j appears in (see Fig. 1):

avoidance area (r ≤ r1):
βij(t) = min(φij(t) ± 90°), (2)

parallel area (r1 < r ≤ r2):
βij(t) = dj(t) – di(t), (3)

attraction area (r2 < r ≤ r3):
βij(t) = φij(t), (4)

searching area (r > r3 or dead angle area):
βij(t) = an angle [–180°,+180°) chosen with uniform probability, (5)

Fig. 1.  Ranges of the basic behavior patterns.
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where β0 means wobble* about each decision of the direction, and it has Normal-
distribution Normal(0,θ2), and where min(a,b) returns the minimum value of a or b, by
comparison between |a| and |b|.

In normal mode, the direction of individual i is determined on the assumption that the
determination is affected by the relation with one reference individual j. In this model, j is
selected with greater probability** of nearer neighbor to i. It should be noticed that this
assumption does not mean the limitation of perception; individuals leave a margin for
emergencies.

2.1.2  Decision of the speed
The speed of an individual at any time is determined independently of other individuals.

The speed is a stochastic variable characterized by a probability distribution. It is described
by a Gamma-distribution, namely, the probability density p(v) of speed v is given as
follows:

p v
A

K
Av v

K
K( ) =

( )
⋅ −( ) ⋅ ( )−

Γ
exp ,1 6

where Γ(K) is Gamma function***, and A and K are non-negative constant parameters.
This decision method is based on Aoki’s observations (AOKI, 1980).

2.2.  The enhanced model considering predator’s existence
In this paper, we consider an ecology where predator and prey coexist. The section

describes the urgent behavior of an individual when it senses a predator approaching.
2.2.1  Decision of the direction of movement (urgent mode)
Individuals shift to urgent mode, when a predator appears in the sensory field of the

individual. Let i be an individual, j be a reference individual for i, and e be a predator which
is sensed by i. In urgent mode, the direction di(t + ∆t) of i at time t + ∆t, is defined as follows:

d t t d t ti i ije+( ) = ( ) + ( ) + ( )∆ β β0 7,

where βije(t), distinct turning angle of i for j against e, is determined by the following
equation whichever areas in the sensory field e and j appear in:

β
α β γ δ

α β γ δije
ij ij ie iet

A t B t C t D t
( ) =

( ) + ( ) + ( ) + ( )
+ + +

( ), 8

where Aij(t), Bij(t), Cie(t), and Die(t) are turning angles for parallel with j, attracted to j,
averting from e, and away from e, respectively (see Fig. 2).

*This non-deterministic factor has two effects: the naturalness in behavior and the avoidance of deadlock
in rare cases.

**The probability of the selection for j is in inverse proportion to the distance between i and j.
***Note that Γ(K) = (K – 1)! if K is a non-negative integer.
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A t d t d tij j i( ) = ( ) − ( ) ( ). 9

B t tij ij( ) = ( ) ( )φ . 10

C t tie ie( ) = ( ) ± °( ) ( )min .φ 90 11

D t tie ie( ) = ( ) − ° ( )φ 180 12.

In Eq. (8), α , β, γ, and δ are weights on the turning angles: parallel, attracted, averting,
and away from respectively. These weights determine the strategy of the individual for
evasion of predator.

In urgent mode, both reference individual j and predator e affect the direction of
individual i. In this paper, we suppose that this is full perception of individual i. It should
be noticed that there is no areal partition for action determination in this mode. For
simplification, we also suppose that the speed component of the individual is independent
of predator. The speed of an individual in urgent mode is determined by the same manner
as mentioned in Subsec. 2.1.

2.3.  Predator’s behavior
The section gives a brief description of behavior of the predator. Behavior of the

predator is characterized by two properties: specialization in chase for prey (corresponding
to an individual) and a superior sensory ability and speed. Figure 3 shows the ranges of
predator’s behavior patterns: prey, chase, and search. The sensory field of predator is the
inside of chase area.

2.3.1  Predator’s movement: specialized orientation for chase
Let e be a predator and i be an individual, and suppose that i lies within the sensory

field of e (we call individuals such as i preying target for e). The direction de
p (t + ∆t) of

Fig. 2.  Turning angles for behavior in urgent mode.
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e at time t + ∆t, is defined as follows:

d t t d t te
p

e
p

ei
p+( ) = ( ) + ( ) + ( )∆ β β0 13,

where βei
p (t), distinct turning angle of e for prey target i, is determined by any of the

following equations according to which area of e i is caught up (see Fig. 3):

prey area (r ≤ r4):

βei
p t( ) = ( )0 14,

chase area (r4< r ≤ r5):

β φei
p

eit t( ) = ( ) ( ), 15

searching area (r > r5 or dead angle area):

βei
p t( ) = ° ° ( )an angle [180 ,+180 chosen with uniform probability. 16)  

In this model, preying target i for e is selected with greater probability of nearer neighbor
to e.

It should be noticed that the sensory field and speed of the predator are superior to the
prey’s, that is, r3 < r5, and the speed of the predator at any time is η times faster than that
determined by Gamma-distribution for individuals (see Eq. (6)).

2.4.  Genetic algorithm
All of individuals have the parameters for orientational configuration for predator: α ,

β, γ, and δ (see Eq. (8)). Chromosomes of individuals are composed of these parameters,
that is, four sections, and each of the parameters is encoded in 10 bit graycode strings
(shown in Fig. 4). Each chromosome is assigned a fitness value that indicates the quality

Fig. 3.  Ranges of predator’s behavior.



A Simulation Study on the Form of Fish Schooling for Escape from Predator 125

of the solution derived from the chromosome. We consider, as the quality of the solution,
how many time steps the individual can survive with its evading behavior based on the
orientational configuration the chromosome represents.

During the execution of a GA, the population in the ecology is continually replaced by
new populations. The new populations are created by applying operators (crossover and
mutation) to members of the existing population. We apply one point crossover for each
section of chromosome (totally four points) to two parents, and assign 5% to probability
of mutation for each bit of chromosome after crossover. An individual’s chance of being
chosen as a parent is proportional to its fitness. If this evolution happens enough, the
population should gradually improve as fitter and fitter individuals are created, please refer
to MITCHELL (1996) and MICHALEWICZ (1996) for introductions to GAs.

3.  Simulation

3.1.  Artificial ecology
This section describes experiments with our artificial ecology to investigate the

effects of evolution on evading behavior of its inhabitants. Evolutionary perspectives on
fish schooling suggest that the environment plays a key role in its emergence. The number
of factors to consider is, however, potentially infinite. In this research, we have implemented
only the principle components of the ecology. We, thus, consider a 40BL by 40BL toroidal
environment, where BL means the mean of the body length of individuals. For simplification,
water depth, flow, and temperature and external stimuli, such as acoustic, olfactory, and
photonic stimuli, are not considered in the ecology. We take N prey individuals (small
fishes) and a predator (predatory fish) in the ecology. The individuals evolves their own
orientational configurations for evasion of predator every discrete time steps. At each
evolution, the ecology create the shortfall of individuals to the next generations, if there
exists less than N individual. It should be noticed that our aim is not to perform prey-
predator coexistence, but to evolve prey’s evading behavior with grouping.

3.2.  Acquisition of evading behavior
In one of the experiments, we took 100 individuals (small fish) and a predator

(predatory fish) in the ecology. The behaviors of an individual and a predator comply with
the behavioral models mentioned in Sec. 2. Parameters for the basic behavioral model for
small fishes (see Subsec. 2.1), where r1 = 0.5BL, r2 = 2.0BL, r3 = 5.0BL, and w = 30° for
the ranges of their behavior patterns. θ = 15.0 for wobble on the decision of individual’s
orientation, and A = 3.3, K = 4.0 for decision of individual’s speed (see Eq. (6))*.

Fig. 4.  An example of the chromosome structure.

*These parameters are given by Aoki’s standard run (AOKI, 1982), which has a basis for schooling
behavior of fish.
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Parameters for the behavioral model for predator (see Subsec. 2.3), BLp = 2BL, r4 =
0.25BLp, r5 = 5.0BLp, and w = 30° for the ranges of its behavior patterns*, η = 1.2 for
predator’s dominance of speed**. On the above conditions, we have run the system for 300
generations, with 1,000 moves in each, and total of 10 runs were made.

Figure 5 shows the average proportions of parameters, α , β, γ, and δ, which determine
orientation configuration of individuals for evading predators, with each generation. The
result indicates that, as each generation, each of the parameters becomes more convergent;
β becomes lower, δ becomes higher, and α  becomes fairly higher. It is obvious that δ
becomes larger so as to acquire the evading behavior. The increase in α  should be noticed;
this suggests that evolution takes schooling more into consideration of evading behavior.

3.3.  Observational evaluation
We have also made an observational investigation for our model by comparing real

fish behavior with the simulation. Figure 6 shows snapshots of evading behaviors by
sardines and bonitos in aquarium (the right frames), and by our simulation (the left
frames)***. In the simulation, we determined the setting for parameters: η = 1.2 and ∆t =
150 (msec)****. This makes a situation similar to the observational result in the aquarium.
The proportions of parameters α , β, γ, and δ are set at the values obtained from the above
experiments (see Fig. 5). At first, a fish school and a predator face each other. Individuals

Fig. 5.  Average proportions of α , β, γ, and δ in the enhanced behavioral model.

*BLp means the body length of the predator. It should be noticed that predator has the sensory field 4 times
larger than that of small fishes.

**In this paper, parameters for predator have an arbitrary determination. Please refer to OBOSHI et al.
(2002) for more experiments about different parameters.

***The movement of real fish in 3-D approximates to 2-D by the snapshots from the bottom of the
aquarium.

****It should be noticed that the setting of ∆t is ad hoc for our experimental environment. The suitable
setting depends on the average speed of individuals and CG performance of a computer.



A Simulation Study on the Form of Fish Schooling for Escape from Predator 127

Fig. 6.  A comparison of fish behaviors between the real and the simulation.
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in the front of school, reverse their direction in order to avert from the predator (see Fig.
6-(1)). Secondly, individuals in the rear of the school refer to the front individuals’ actions,
shortly after that, all individuals reverse their direction (see Fig. 6-(2)). Next time step, the
predator overtakes individuals, since its speed is superior to individuals, and the prey
scatter in order to evade the predator (see Fig. 6-(3)). Finally, prey which succeed in the
escape from the predator make schools again (see Fig. 6-(4)).

As one of the comparisons, we have measured the polarization of the fish school. The
polarization ρ characterizes the intensity of parallel orientation in the school. The polarization
is defined as the average of the angle deviation of each fish to the mean swimming direction
of the school. For ρ = 0° the school is optimally parallel, for ρ = 90° the school is maximally
confused. Figure 7 shows the transition of polarization ρ of fish behaviors shown in Fig.
6. In the graph, (1), (2), (3) and (4) correspond to the labels in Fig. 6. The graph shows that
two transitions have fairly similar tendency each other. The results indicate that our model
and evolutionary method can evolve evading behavior of individuals adaptively to their
environment, and a collective strategy for evading predator emerges by our method.

Fig. 7.  Transition of polarization of fishes.

Fig. 8.  Three situations of face-to-face.
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3.4.  Transition of form of fish school in evading behavior
This section gives a brief analysis of the form of fish school in which fishes have the

evading behaviors. In this experiment, we prepared three situations in which a school and
a predator are face-to-face: (a) right opposite, (b) opposite and (c) slant opposite,
respectively (see Fig. 8). The size of the school were set at 30 individuals. The proportions
of parameters α  ,β ,γ, and δ were set at the values obtained from the above experiments (see
Fig. 5). Please note that we imposed on predator’s behavior for making the analysis
simpler; it moves straight. Other parameters are the same with the above experiments. We
firstly have observed the transition of form of school for the situations. Each situation
brought the school characteristic form: (a) scattering, (b) averting and (c) collective. Figure
9 shows the snapshots of these three typical evading behaviors. In the figure, (1), (2) and
(3) mean the progress of the situation: 20, 40 and 80 (step) respectively. As well as the
previous section, we have measured polarization ρ of the fish school. Figure 10 shows the
transition of the average polarization of school (shown in Fig. 9) with 10 trials. For

Fig. 9.  Variation of the form of school.
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comparison, we plotted the average polarization of the school without predator (see (d) in
Fig. 10). Our behavioral model for fish schooling, as the result of this analysis, suggests a
property of school in evading behavior from predator. The degree of scattering gets higher
according as a school gets closer to a predator in distance and direction. After the evading
behavior for a moment, the school gets polarized with caution if it succeed in the evasion,
otherwise it scatters away.

4.  Conclusion

In this paper, we considered an ecology where fish and a predator coexist, and then
enhanced one of the models for fish schooling with an ability to sense for predator’s
approach. After that, we proposed an evolutionary method for the acquisition of evading
behavior against predator. We also implemented simulation of a prey-predator system, and
reported simulated prey behaviors, that agreed well with observations of real fish,
especially evading behaviors against predator with advantage of schooling.

We are grateful to Mr. Watanabe and the Port of Nagoya Public Aquarium for observational
support, advice and discussions. This work was supported in part by Artificial Intelligence Research
Promotion Foundation and Ministry of Education, Science, Sports and Culture, Grant-in-Aid for
Scientific Research under grant #14780307.
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