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Abstract.  An experimental study was performed on deformation of a neutrally buoyant
drop of a magnetic fluid exposed to a magnetic field. Neutral buoyancy of the drop was
realized by placing it in an aqueous solution of lithium bromide whose density was
adjusted to the former, and the magnetic field was applied to observe shape change in the
absence of contacting solid boundary. When a steady magnetic field was applied, the drop
was deformed into an ellipsoid of revolution, whose aspect ratio was determined by the
balance of the surface tension and the Maxwell’s stress. When the magnetic field was
oscillating, eigen modes of oscillation were induced under certain conditions. In other
circumstances, shape of the drop changed with frequency two times of the externally
applied one. The present method is applicable to estimate surface tension coefficient and
magnetic susceptibility of the magnetic fluid.

1.  Introduction

Magnetic fluid has attracted much attention among scientists both theoretically and
experimentally, because of its peculiar magneto-fluid-mechanical properties as well as
wide applications in engineering. Examples of the latter are rotary-shaft seals, levitation
devices, sink-float separation processes, impactless printings, optical shutters, energy-
conversion schemes, and so forth (see ROSENSWEIG, 1982, 1985, 1987; GOTOH, 1986, for
reviews). Quite a number of studies have been made on equilibrium shape and stability of
the boundary of magnetic fluid for the past few decades. For instance, instabilities of planar
surface and the development into cellular patterns have been investigated both theoretically
and experimentally by NEURINGER and ROSENSWEIG (1964), COWLEY and ROSENSWEIG

(1967), ZELAZO and MELCHER (1969), ZAITSEV and SHILIOMIS (1969), GALITIS (1977),
and others. Equilibrium shapes of the initially spherical or cylindrical magnetic fluid
domain under applied magnetic field have also been studied (TARAPOV, 1974; ARKHIPENKO

et al., 1978; Gotoh and Yamada, private communication, 1983). Magnetic fluid domain
shows elongation in the direction of the magnetic field, which is followed by neck
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Fig. 1.  Experimental apparatus.

formation and disruption into smaller droplets for stronger magnetic field.
Theoretical studies often assume magnetic fluid domain which is free from solid

boundaries, whereas the presence of the container is inevitable in the experiment. The fluid
dynamical behavior, however, depends sensitively on the presence of the solid walls.
Indeed instability of the surface of magnetic fluid drop placed on the horizontal plate
(MILLER and RESLER, 1975; BRANCHER and ZOUAOUI, 1987), which is subjected to a
vertical magnetic field, develops into cone or spike formation above critical magnitude of
the magnetic field. Instabilities of a magnetic fluid domain confined between two narrowly
spaced parallel plane walls, to which a uniform magnetic field is applied perpendicularly,
are observed (ROMANKIW et al., 1975; TSEBERS and MAIOROV, 1980a, b, c), where
sequence of transitions of a drop shape from circular disc to elliptic disc (“elliptical”
instability), meandering fingers (“serpentine” instability), and disruption into smaller
droplets (“overextension” instability) is shown as the magnitude of the field is increased.
Similarly a comb-like pattern, in which the mutual invasion of finger-like fluids (i.e.
magnetic and non-magnetic fluids) develops into simply connected but highly convoluted
region, referred to as labyrinthine structure, has also drawn much attention (ROMANKIW et
al., 1975; TSEBERS and MAIOROV, 1980b; ROSENSWEIG et al., 1983; CHUDA and SANO,
1994; PACITTO et al., 2001). All these studies, however, were not entirely free from solid
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boundary which confines the magnetic fluid, so that the properties of a given magnetic fluid
and consequently the fluid dynamic behavior also depended on the geometry of the system.

On the other hand, theoretical studies on deformation of a non-magnetic fluid drop,
which is not influenced by the presence of a solid boundary nor by the gravity, have been
extensively made. In particular, the theory by RAYLEIGH (1879) is well known, which is
described in many textbooks (e.g. LANDAU and LIFSHITZ, 1987). Corresponding experimental
observation, however, are limited, because of the difficulty of realizing all theoretical
requirements. Recently, ARAI et al. (1991, 1998) have reported experiments on polyhedral
vibration of a spherical drop of non-magnetic fluid. They showed large amplitude
axisymmetric mode and tetrahedral mode, each of which is expressed by a single spherical
harmonic function (abbreviated as SHF). They also show other regular-polyhedral modes,
which are expressed by superposition of several SHFs. In their experiment, however,
almost neutrally buoyant drop of orthotoluidine was supported by a thin rod in an aqueous
solution of sugar, and was given an oscillation by another thin rod which is connected to
a loud speaker, so that two points on the drop were not in free condition. In order to remove
the effect of the contacting solid boundary, we performed an experiment on equilibrium
shape and dynamic response of a neutrally buoyant magnetic fluid drop, which was
completely free from solid boundaries and which was excited non-intrusively by the
magnetic field.

2.  Experimental Apparatus

We used paraffin-based magnetic fluid MARPOMAGNA FN-40 (Matsumoto Yushi-
Seiyaku Co., Ltd.) as a test liquid, whose density ρ is 1.32 ± 0.05 [g/cm3] (at 20[°C]),
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Fig. 2.  Magnetic flux density (a) along the axis and (b) in the mid-plane in the test section. Drop deformation
is tested in the region shown by the squares in the above figures.
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viscosity η is less than 30 [cP] (at 20[°C]), and magnetization is 400 ± 20 [gauss] for a
magnetic field 6000 [Oe]. In order to assure the condition free from solid boundary, we put
the material into an aqueous solution of lithium bromide (LiBr). The density of the latter
was adjusted so as to keep the drop neutrally buoyant. Shape of the drop in the absence of
magnetic field was an almost complete sphere due to the surface tension.

We show our experimental apparatus in Fig. 1. We used a Faraday’s electromagnet
whose core diameter was 50 [mm] and separation distance of the magnetic poles was 80
[mm]. The magnetic flux density was calibrated by means of the Gauss meter (Yokogawa,
Type-3251). We show the magnitude of the field along the axis of the magnet in Fig. 2(a)
and that on the mid-plane in Fig. 2(b), which show almost uniform distribution in the region
where the drop was placed (shown by the squares in Figs. 2(a) and (b)).

A drop of magnetic fluid of radius R ranging from 1 to 5 [mm] was placed at the center
of the magnetic poles, where the magnetic flux density is nearly uniform over the drop. We
firstly applied static magnetic field H0, and the contour shape of the drop was observed by
a still-camera. When the static magnetic field was applied, the drop initially spherical was
elongated along the field direction, which is well described by an oblate spheroid of
revolution (see Subsec. 3.1). Figure 3(a) is an example of the side view of the drop, where
the equatorial and polar radii are denoted by b and c, respectively. Secondly we applied a
sinusoidally oscillating magnetic field H = H0sin(2πfextt) to the electromagnet, which was
controlled by a function synthesizer (NF ELECTRONIC INSTRUMENTS, Model 1920)
and an amplifier (EMIC, Type 360-A). The shape of the drop was observed by means of a
high-speed video camera (PHOTRON, Fastcam-PCI). Figure 3(b) is one such example,
showing a snapshot of the drop with higher mode and larger deformation. Dependences of
the contour shape on the frequency fext and magnitude H0 are examined later.

In analyzing the contour image data, we developed a system, in which the contour
shape was automatically measured through the following processes:

(i) Successive pictures of the magnetic fluid are taken into a computer.
(ii) Each image data is digitized by setting an appropriate threshold value, so that the

drop domain is continuously covered.

  

(a) (b)

Fig. 3.  Deformation of a magnetic fluid drop due to magnetic field.
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(iii) Contour shape is taken out by finding the edge of the drop area (see Fig. 4(a)),
whose (x, y) coordinate is stored.

(iv) The (x, y) data is transformed into (r, θ) coordinate, in which the origin is chosen
at the center of the contour. Contour shape is described by r = Rf(θ), where a certain
smoothing is made if necessary (see Fig. 4(b)).

(v) Approximate the contour by axisymmetric spherical harmonic functions like

r = R[P0(cosθ) + c2P2(cosθ) + c4P4(cosθ) + ···], (1)

where P0 = 1, P2 = (3cos2θ + 1)/4, P4 = (35cos4θ + 20cos2θ + 9)/64, ... are the Legendre
polynomials.

(vi) Processes from (ii) to (v) are made for each image data, and time variation of the
drop shape is recorded in the case of oscillating magnetic field.

3. Experimental Results

3.1.  Equilibrium shape of the drop
Equilibrium shape of the drop is theoretically expected to be determined by the

balance of pressure due to surface tension 2σ/R* and the magnetic pressure (1/2)µH0
2,

where σ is the surface tension coefficient, R* is the mean radius of curvature, µ is the
magnetic permeability of the drop, and H0 is the strength of the externally applied magnetic
field. Because of the quadratic dependence on H0, the drop shape should have fore-and-aft
symmetry with respect to the direction of the magnetic field, which was almost ascertained
experimentally throughout all tested range of H0 (see Fig. 3). In order to check the drop
shape quantitatively we calculated the volume of the drop by assuming an oblate spheroid
of revolution with equatorial radius b and polar radius c (see Fig. 3(a)), which is compared
with the initial volume of a sphere of radius R. In all tested cases the agreement is well
within an experimental accuracy of about 5%. Figure 5 describes the dependence of polar
radius c on the magnetic field, which seems to support quadratic dependence of the
elongation of the drop as the magnetic field is increased.

Fig. 4.  Contour shape of the magnetic fluid drop.
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3.2.  Transient behavior of the magnetic drop and the determination of surface tension
When the steady magnetic field was switched off, the elongated magnetic fluid drop

showed damping oscillation and approaches to a sphere, which was observed by the high-
speed video camera. An example of the time dependence of the ratio of polar to equatorial
radii is shown in Fig. 6.

In the case of a spherical drop of inviscid fluid, oscillation of the shape with an
infinitely small amplitude is analyzed by RAYLEIGH (1879): the eigen frequency of mode
l corresponding to an axisymetric deformation described by r = R[1 + εexp(–2πiflt)Pl(cosθ)]
is
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Fig. 5.  Dependence of polar radius c on the magnetic field.

Fig. 6.  Damping oscillation of an elongated drop after the magnetic field was switched off ( R = 3.6 [mm], H0

= 2.7 × 103 [A/m]).
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where σ is the surface tension coefficient, ρ is the density and R is the mean radius of the
drop. For the lowest mode l = 2, the frequency is given by
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which mainly describes oscillation of our drop in the absence of magnetic field, although
both the polar and equatorial radii show damping oscillation due to viscosity. In order to
estimate the effect of the viscosity, we assume damping oscillation of the form:

c c t f t= −( ) −



 ( )0 2

2 22 2 4exp cos ,πγ π γ

where γ is a friction coefficient, f2 is the frequency in the absence of viscosity and c0 is the
initial polar radius. From successive peak values as shown in Fig. 6 we can estimate γ,

whereas successive periods T = 1/f, f = f2
2 2− γ  are used to determine the eigen frequency

f2. Consequently we can estimate the surface tension σ of the magnetic fluid in aqueous
solution of lithium bromide (ca. 35%) from Eq. (3).

Figure 7(a) shows the relation of surface tension σ to the magnetic field, whose
dependence is rather weak. This result is expected from theoretical point of view, because
Maxwell’s stress, and hence H0, µ and µ0, is relevant only at the initial elongation of the

10
-3

10-2
10

-1
100
10

1
10

2

P
(f

)

403020100

Frequency [Hz]

         Polar Radius
  Equatorial Radius

fext
 

fpeak

(b)(a)

10-2

10
-1

10
0

10
1

10
2

P(
f)

806040200

Frequency [Hz]

         Polar Radius
  Equatorial Radius

fext

fpeak
 

(a) (b)
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Fig. 9.  (a) Time variation of polar and equatorial radii and (b) their power spectra: R = 1.9 [mm], H0 = 2.64 ×
103 [A/m], fext = 15.0 [Hz].
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drop. Figure 7(b) also shows weak dependence of σ on temperature T. But it refers to only
a confined range T = 20~24[°C], in which our measurement was performed, so that it does
not exclude the possibility of temperature dependence of σ in wide range. On the contrary,
considerable dependence of σ on the size of the drop is recognized in Fig. 7(c). Since we
focus our attention to the eigen mode f2, in which effects of magnetic field, temperature and
viscous damping have been removed, the cause of the size dependence will be attributed
to the deviation from the assumption of infinitesimal deformation in Rayleigh’s theory. In
fact when the deformation of the drop is larger, the surface area and the effective radius of
the drop become larger, so that the estimated value of σ becomes larger. In this context, the
limiting value of σ associated with the smallest drop, where surface tension is sufficiently
large to keep the latter spherical, will be the most reliable one. Measurement of the drop
size, however, becomes poorer for smaller drops. Thus we approximate all the data by least-
squares fitting, and extrapolate the relation to R = 0, by which we obtain σ = 6.32 ± 0.27
[dyn/cm] at temperature 22.0[°C].
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3.3.  Oscillatory behavior of the magnetic drop under alternating magnetic field
We show the oscillatory behavior of the magnetic fluid drop under externally applied

magnetic field H = H0sin(2πfextt). Figures 8(a) and (b) show the time variations and their
power spectra, respectively, of the polar radius (solid line) and equatorial radius (broken
line) of the drop. The primary oscillation frequency of the drop was two times of the
externally applied one (i.e. fpeak = 2fext). The deformation was dominated by the applied
magnetic field, so that it occurred symmetrically irrespective of the sign of the magnetic
field.

On the other hand, Figs. 9(a) and (b) are the time variations and their power spectra,
respectively, which shows that a certain eigen mode of oscillation with the same period of
the external field (i.e. fpeak = fext = f2) was induced. Between these two typical cases, several
mode mixings were observed (see Figs. 10(a)–(d)). We also show their power spectra in
Fig. 11. The amplitude of the oscillation with frequency 2fext decreases as the frequency fext
increases (see Figs. 10(a)–(d) and 11), so that the oscillation type changes from forced
modes to eigen modes.

In the case of larger drop under larger sinusoidal magnetic field, we had higher mode
oscillation of the contour shape. Figure 12 is an example, where a few typical phases within
a particular mode are shown. In contrast to ARAI et al. (1991, 1998), where both
axisymmetric and asymmetric modes were artificially excited, all deformations observed
in our experiment were axisymmetric ones. Due to inertia effect, polar radius c/R amounted
to as large as 2.7 in the above example but no disruption was observed in the tested range
of magnetic field strength.

3.4.  Pattern diagram of the oscillation
We show the pattern diagram of oscillation modes in Fig. 13, where the abscissa is the

normalized frequency f* = fext/f2 and the ordinate is the ratio of magnetic pressure to surface
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tension α = µH0
2R/σ. We see that successive eigen modes (shown by open triangles) were

induced with the increase of external oscillation. Vertical lines in Fig. 13 correspond to
eigen frequencies normalized by f2, whose values are 1, 15 /2 � 1.936, 3, 70 /2 � 4.183,
... for l = 2, 3, 4, 5, ..., respectively.

4.  Discussion

4.1.  Equilibrium shape of a magnetic fluid drop with small deformation
The static deformation of a magnetic fluid drop is determined by the balance of

     

(a) (b) (c) (d)   (e) (f)

Fig. 12.  Snapshots of the large amplitude deformation: R = 3.99 [mm], H0 = 7.2 × 103 [A/m], fext = 4.0 [Hz]. (a)
t = 0, (b) t = 0.240T, (c) t = 0.368T, (d) t = 0.496T, (e) t = 0.624T, (f) t = 0.867T. T is the period of external
field.

Fig. 13.  Pattern diagram of oscillation.
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Maxwell’s stress with surface tension. The contour shape in the meridian plane is given by
SANO (1996) as follows (see also Appendix):
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and µ0 is the magnetic permeability of the ambient fluid. Up to O(ε), the polar radius of the
drop is derived from Eq. (5) by putting cosθ = 1 as follows:

c

R

R
H= +

−( )
+( )

( )1
3

4 2
70 0

2

0
2 0

2µ µ µ

σ µ µ
,

which explains the quadratic increase of c for a given R (see Fig. 5).

4.2.  Large deformation of a magnetic fluid drop
Contour shapes of Eq. (5) up to O(ε) are shown in Fig. 14(a), where ε = 0, 0.5 and 1.0.

Figure 14(b) is an example of calculation based on the approximation up to O(ε2), where
ε = 0.5 and µ/µ0 = 1. Contour shapes, which correspond to different ratios of P2(cosθ) and
P4(cosθ), are comparable to Figs. 12(a)–(f), although total volume of the drop is not
conserved in the present calculation.

4.3.  Measurement of magnetic fluid properties
As has been shown in Subsec. 3.2, we can estimate surface tension coefficient of the

magnetic fluid by measuring damping oscillation after the magnetic field is switched off.
In addition if we make use of the measured data of c (polar radius of the equilibrium shape
of the magnetic drop of radius R) under given magnetic field H0, we can estimate relative
magnetic permeability µ/µ0, or magnetic susceptibility χ = µ/µ0 – 1 through Eq. (7). Rough
estimate of the latter is (7 ± 3) × 10–5. At this moment the accuracy of our measurement of
the equilibrium shape is not sufficient to give more accurate value, which should be
improved in future investigation.
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Appendix

Derivation of Eq. (5) is given here. The equilibrium shape of a magnetic fluid drop is
determined by the following boundary conditions. Let H and B denote the magnetic field
and the magnetic flux density, respectively. Continuities of the tangential components of
the former Ht and the normal component of the latter Bn, are required on the boundary:

Ht{ } = ( )0, A1

Bn{ } = ( )0, A2

where {Q} = Qout – Qin denotes the difference of a quantity Q of outside value from inside
one. Balance of Maxwell’s stress Tij and surface tension is given by (IMAI, 1989)

T H n nn{ } ≡ −( ) +



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R R
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where µ and µ0 are the magnetic permeabilities inside and outside of the drop, respectively,
R1 and R2 are the radii of curvature of the drop, respectively, and n is the outward unit vector
normal to the boundary. We assume an axial symmetry as well as fore-and-aft symmetry
of the drop, so that the shape of the drop is given by (see Fig. A1)
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Fig. 14.  Contour shapes of an oscillating magnetic fluid drop.
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Then we have, for example, normal and tangential components of H:
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exposed to a uniform magnetic field H0 in the z-direction, are, after some calculation,

Fig. A1.  Definition sketch of the coordinate axes.
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By the constraint that the volume of the drop is conserved, the shape of the magnetic fluid
drop is given by

  

r

R
c c c c c= − + − +



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+ + +[ ] ( )1
2

3

16

45

8

15
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2
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2 2
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2 2

2
4ε ε ε ε θ ε θL Lsin sin , A11

which leads to Eq. (5). The expression (6) is obtained by rewriting the trigonometric
functions by the Legendre’s polynomials.
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