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Abstract.  This paper develops a method for deriving a time-dependent traffic flow over
a rectangular city with a rectangular grid network, when a commuters’ destination arrival
time distribution is given by an arbitrary probability density function defined on a finite
range of the time axis. The introduction of the time variable is a great extension of prior
studies that deal only with the spatial distribution of traffic within a city. The model is
designed for the morning peak period of commuter traffic during which the greatest
overload of existing networks are observed. The results are useful in exploring the
geometrical properties of rectangular grid networks and analyzing the impact of flexible
working hours on commuter trip distributions.

1.  Introduction

This paper presents the analytical and geometrical framework for constructing a time-
dependent traffic flow model based on a rectangular grid network. In the theory of
continuous traffic flow modeling, the primary assumptions are that the distributions of
endpoints of trips can be represented by continuous functions defined over the two-
dimensional plane and that continuous movement on the infinitely dense idealized networks
is possible. These assumptions facilitate the analytical treatment of the problems and allow
us to explore how spatial traffic patterns are influenced by (1) the shape of the city, (2) the
geometrical arrangement of the network, and (3) the distributions of endpoints of trips over
the city. The pioneering work was done by Reuben Smeed who emphasized the importance
of the continuous approach to transport problems and laid the mathematical foundations for
analyzing traffic patterns in idealized cities (SMEED, 1961, 1963, 1968). After his series of
works, a number of studies that deal with the spatial distribution of traffic in idealized cities
have appeared (HOLROYD, 1968; ANGEL and HYMAN, 1976; VAUGHAN, 1987). The basic
ideas of these studies are that, by deriving traffic as an analytical function of position under
given assumptions (network arrangement and distributions of endpoints of trips), the
location of potential congestion areas resulting from these assumptions can be analyzed.
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These studies, however, concern only with locational variations of the traffic flow and
ignore completely the temporal fluctuations of the traffic flow. The prime aim of this paper
is to extend prior studies of traffic flow models by incorporating the time variable
explicitly. This great extension allows us to analyze spatial-temporal traffic patterns during
the peak commuting period and provides us insights into how the commuters’ destination
arrival time distribution influences traffic over the urban transport infrastructure.

We assume that transportation network consists of rectangular grid networks running
in two perpendicular directions and parallel to the sides of the rectangle. The shortest
distance on this rectangular networks is called the rectilinear distance (also known as the
Manhattan distance (BECKMAN, 1999) and the taxicab distance (KRAUSE, 1987)), and the
assumption of movement on this network is extensively used in a variety of disciplines,
such as urban economics (ANJOMANI, 1980), location theory (LARSON and ODONI, 1981;
BUTT and CAVALIER, 1997; BECKMAN, 1999), computational geometry (REZEND et al.,
1989), transport planning (VAUGHAN, 1987). Efficiency of movement on the rectangular
networks in comparison with other types of metrics has also been studied in VAUGHAN

(1987), KURITA (2001), and OIKAWA (2001). The spatial distribution of traffic over a
square city with rectangular networks is treated in VAUGHAN (1987) and HOLROYD (1968).
Rodney Vaughan, who is a major contributor to this field, summarized a number of works
on various models of the spatial traffic distribution, including his own contributions, and
examined the effects of various transport-network designs on the spatial traffic patterns.
Holroyd considered an interesting problem of routing policy for relieving traffic congestion
in a square city such that the number of travelers crossing each other’s routes is minimized.
Spatial traffic models assuming the radial-arc distance (TANAKA and KURITA, 2001), the
direct distance (OHTSU and KOSHIZUKA, 1998), and the minimum time distance (ANGEL

and HYMAN, 1976) have also been developed.
There have been very few studies that explicitly considered the time variation of traffic

flow (PEARCE, 1975; TANAKA and KURITA, 2002). PEARCE (1975) considered a circular
city with radial-arc road networks and derived the distribution of traffic that includes the
time variable as well as the locational variables. TANAKA and KURITA (2002) developed a
similar model in the case of a square city with rectangular grid networks. These studies,
however, derived traffic distribution only in the very limited case in which all commuters
arrive at their workplaces at the same time. This paper generalizes this assumption and
assumes that the destination arrival time distribution is given by an arbitrary probability
density function defined on a finite range of the time axis. This generalization gives us a
new tool to analyze the relationship between the degrees of concentration of commuters’
destination arrival time and transport demand in space and time. The model developed in
this study can be used to obtain some policy implications of flexible working hours.

2.  Model Description

In this section, we describe a general setting, ranging from the assumptions about the
city model to the assumptions about the movement of travelers. Let us consider a
rectangular city with side lengths L1 and L2 as depicted in Fig. 1. The position of an arbitrary
point is denoted by (x, y) by the Cartesian coordinates with the left bottom corner of the
rectangle at the origin. For convenience, the positive side of Y axis is taken to be north with
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the road networks running in east-west and north-south directions. For ease of expression,
one of the two endpoints of a trip will be called a home, the other a workplace, and their
positions will be expressed as P(xh, yh) and Q(xw, yw) respectively.

2.1.  Movement of travelers
We make the following assumptions about the movement of travelers:
(i) Homes and workplaces are uniformly and independently distributed over the

rectangular city.
(ii) There exist infinitely dense rectangular grid networks over the city.
(iii) Every commuter makes one’s way from home to workplace by one of the two

routes of the minimum trip length with only one turn (route I and II in Fig. 1).
(iv) Each commuter chooses the route I or II between any two points with equal

probability.
(v) The speed on the network is a constant value v, irrespective of the position and

time.
The assumption (i) of uniform origins and destinations is widely used in the fields of

transportation planning, regional science, location theory, urban economics and so on. This
idealized assumption, while not reflecting the actual situation in real cities, allows us to
treat the problem analytically and to discover geometric and morphological properties of
the network under investigation. In addition, a uniform model provides a first approximation
of the more “real” model having nonuniform, location-dependent densities.

The minimum distance d(P, Q) between the point P(xh, yh) and Q(xw, yw) in the
rectangular network is given by

d x x y yP,Q h w h w( ) = − + − ( ). 1

Fig. 1.  A rectangular city with side lengths L1 and L2 and routes used between home and workplace.
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There exist, however, an infinite number of the minimum length routes between these two
points. The natural assumptions are that every commuter chooses the minimum length
route with the least turn with equal probability (assumption (iii) and (iv)).

2.2.  Destination arrival time distribution of commuters
To uniquely determine the traffic volume at a given point and time, the distribution of

destination arrival time of commuters should be specified. This distribution is given by a
probability density function (pdf) defined on a finite range of the time axis and is denoted
by

f f t t t t a= ( ) ≤ ≤ +( ) ( )   .0 0 2

We assume that all commuters follow the same destination arrival time distribution, f(t),
irrespective of the position of home and workplace. An example of f(t) is given in Fig. 2.
We can regard a time interval of length a as a measure of dispersion of destination arrival
time of commuters. It should be noted that by expressing the arrival time distribution as an
arbitrary pdf, it will be possible to analyze the relationship between the length of
commuting duration a and spatio-temporal traffic patterns during the peak commuting
period.

3. Definitions of Traffic Flow and Traffic Flow Density

In this section, we introduce the function that describes traffic volume passing through
a point (x, y) at a given time t, and this function is referred to as the traffic flow density. To
derive the traffic flow density, we also introduce the function that describes the total traffic
volume passing through a point (x, y), and this function is referred to as the traffic flow.
Precise definitions of these two functions are given in the following subsections.

Fig. 2.  An example of a probability density function of destination arrival time of commuters.
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3.1.  Definition of traffic flow density
We denote the traffic flow density of easterly direction by pE(x, y; t) which is the

function of time t as well as position (x, y), and we define pE(x, y; t) as follows: Let αE be
the number of commuters crossing the line segment C connecting the point (x, y1) and (x,
y2) during the time interval t ∈  [ta, tb] as shown in Fig. 3. The traffic flow density of easterly
direction, pE(x, y; t) is defined such that the following equation is satisfied:

α E E d d= ( ) ( )
== ∫∫ p x y t y t

y y

y

t t

t

a

b , ; .
1

2 3

This definition of the traffic flow density of easterly direction gives that pE(x, y; t)dydt is
the number of trips passing though the small line segment with length dy located at the point
(x, y) during the small time period [t, t + dt], and its dimensions are given by number per
length per time. The traffic flow densities of westerly, northerly, and southerly directions
are similarly defined, and are denoted by pW(x, y; t), pN(x, y; t), and pS(x, y; t), respectively.

3.2.  Definition of traffic flow
We denote the traffic flow of easterly direction by qE(x, y) which is the function of

position (x, y) only, and define qE(x, y) as follows: Let βE be the total number of commuters
crossing the line segment C as shown in Fig. 3. The traffic flow of easterly direction, qE(x,
y), is defined such that the following equation is satisfied:

βE E d= ( ) ( )
=∫ q x y y

y y

y
, .

1

2 4

This definition of the traffic flow of easterly direction gives that qE(x, y)dy is the total

Fig. 3.  Illustration of the definitions of traffic flow and traffic flow density.
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number of commuters passing though the small line segment with length dy located at the
point (x, y), and its dimensions are given by number per length. The traffic flows of
westerly, northerly, and southerly directions are similarly defined, and are denoted by
qW(x, y), qN(x, y), and qS(x, y), respectively. The function defined by Eq. (4) was first
proposed by HOLROYD (1968), and VAUGHAN (1987) calculated this function in a unit
square city with rectangular grid networks. It should be noted that the traffic flow density
we introduced in Eq. (3) is a natural (but great) extension of the function defined by Eq. (4).
From Eqs. (3) and (4), we see that the traffic flow density is the temporal density of the
traffic flow.

4.  Formulation of Traffic Flow Density

This section describes the method for calculating the traffic flow density defined in the
previous section. First, we formulate the relationship between the traffic flow density and
the traffic flow. Then, derivation methods for these two functions are explained.

4.1.  Relationship between traffic flow density and traffic flow
From Eqs. (3) and (4), the relationship between the traffic flow density of easterly

direction and the traffic flow of easterly direction is given as follows:

q x y p x y t t
t T

T
E E d, , ; ,( ) = ( ) ( )

=∫
0

1 5

where T0 and T1 represent the time that the first and the last commuter pass at the point (x,
y). We introduce the probability density function that describes the distribution of
commuters’ passage time t at the point (x, y) and denote this function by ξE(t|x, y). The
meaning of this pdf is that ξE(t|x, y)dt is the proportion of the number of commuters passing
at the point (x, y) during the time period [t, t + dt] in the easterly direction to the total number
of commuters passing at the point (x, y). From Eq. (5) the traffic flow density can be
expressed as follows:

p x y t q x y t x yE E E, ; , , .( ) = ( ) ⋅ ( ) ( )ξ 6

We can confirm the validity of Eq. (6) in the following manner: Let αE be the number
of commuters passing though the small segment with length dy located at the point (x, y)
during the small time period [t, t + dt] in the easterly direction. From Eq. (3), αE is given
by pE(x, y; t)dydt. On the other hand, this can also be expressed as the total number of
commuters passing though this segment, times the proportion of commuters that pass
though this segment during the time interval [t, t + dt]. The former is given by qE(x, y)dy
from Eq. (4) while the latter is equal to ξE(t|x, y)dt by the definition of the probability
density function, ξE(t|x, y). Thus, Eq. (6) can be obtained. The relationship defined by Eq.
(6) indicates that the traffic flow density is the temporal density of the traffic flow. In the
remainder of this section, we concentrate on developing methods for deriving qE(x, y) and
ξE(t|x, y).
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4.2.  Number of trips between two regions
To derive the traffic flow defined by Eq. (4), the methods for calculating the number

of trips between any two regions in the city should be developed. We follow the method
described in VAUGHAN (1987), which gives the areal densities of homes and workplaces,
and we denote these densities by λ(xh, yh) and µ(xw, yw) respectively. Let n be the number
of commuters from a region SP to a region SQ. From the assumption of independence
between a given home and workplace (assumption (i) in Sec. 2), the number of commuters,
n, between these two regions is given by

n N x y x y x y x y
SS

= ( ) ( ) ( )∫∫ λ µh h w w h h w wd d d d
PQ

, , , 7

where N means the total number of commuters within the city. When the densities of homes
and workplaces are given by the uniform distributions (assumption (i) in Sec. 2), λ(xh, yh)
and µ(xw, yw) are reduced to the following simple expressions:

λ µx y x y
L Lh h w w, , .( ) = ( ) = ( )1

8
1 2

4.3.  Derivation of traffic flow
We explain the method for deriving the traffic flow in the easterly direction, qE(x, y),

in line with the method described by VAUGHAN (1987). First, consider the commuters
passing across the segment (y, y + dy) in the easterly direction at the point (x, y) as shown
in Figs. 4(a) and (b). There are only two types of path the commuters can use (with equal
probability in this case) to pass through the segment. The commuters turn after crossing this
segment as in Fig. 4(a) or before crossing as in Fig. 4(b). In these figures shaded areas and
gray areas represent the areas of acceptable homes and workplaces for the commuters to
pass through this segment. Let us denote the traffic flow corresponding to Fig. 4(a) by qE

I(x,

Fig. 4.  Paris of acceptable homes and workplaces for crossing the segment located at the point (x, y): (a) the
commuters turn after (x, y); (b) the commuters turn before (x, y).
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y) and Fig. 4(b) by qE
II(x, y). Then, the traffic flow in the easterly direction qE(x, y) is

expressed as a combination of these two:

q x y q x y q x yE E
I

E
II, , , .( ) = ( ) + ( ) ( )9

The acceptable areas of homes AP and workplaces AQ in Fig. 4(a) and BP and BQ in Fig. 4(b)
are given as follows:

A x y x x y y y yP h h h h d= ( ) ≤ ≤ ≤ ≤ +{ } ( ), ,  ,0 10

A x y x x L y LQ w w w w= ( ) ≤ ≤ ≤ ≤{ } ( ), ,  ,1 20 11

B x y x x y LP h h h h= ( ) ≤ ≤ ≤ ≤{ } ( ), ,  ,0 0 122

B x y x x L y y y yQ w w w w d= ( ) ≤ ≤ ≤ ≤ +{ } ( ), ,  .1 13

The number of commuters passing through the small segment in Figs. 4(a) and (b) is given
by qE

I(x, y)dy and qE
II(x, y)dy respectively by the definition of Eq. (4), and these can be

expressed as follows:

q x y y
N

x y x y x y x y
x

x

y y

y y

x x
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h h w w h h w w
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d d d d d
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Direct calculation of Eqs. (14) and (15) gives qE
I(x, y) and qE

II(x, y) as follows:

q x y q x y
NL x L x

L L
E
I

E
II, , .( ) = ( ) =

−( )
( )

( )2 1

1 2
2

2
16

Thus, we can obtain qE(x, y) from Eqs. (9) and (16) as follows:

q x y
NL x L x

L L
E , .( ) =

−( )
( )

( )2 1

1 2
2 17

Similar procedures described above give qW(x, y), qN(x, y), and qS(x, y) as follows:
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q x y
NL x L x

L L
W , ,( ) =

−( )
( )

( )2 1

1 2
2 18

q x y
NL y L y

L L
N , ,( ) =

−( )
( )

( )1 2

1 2
2 19

q x y
NL y L y

L L
S , .( ) =

−( )
( )

( )1 2

1 2
2 20

4.4.  Derivation procedure for passage time distribution
We present the method for deriving the distribution of commuters’ passage time at the

point (x, y) when the destination arrival time distribution is given by Eq. (2). Let us denote
this pdf corresponding to Fig. 4(a) by ξE

I(t|x, y), and Fig. 4(b) by ξE
II(t|x, y) respectively.

In the following, the derivation method for ξE
I(t|x, y) is explained. The meaning of ξE

I(t|x,
y) is that ξE

I(t|x, y)dt is the proportion of commuters who have their workplaces within the
area AQ in Fig. 4(a) and pass the point (x, y) during a small time interval [t, t + dt]. To obtain
ξE

I(t|x, y), we introduce the function g(u|x, y) that is defined as the probability density
function of travel time u from the point (x, y) to the workplaces uniformly distributed within
the area AQ. This pdf means g(u|x, y)du is the proportion of workplaces to which it takes
travel time [u, u + du] from the point (x, y).

We first derive cumulative distribution function (cdf) of g(u|x, y) and denote this by
G(u|x, y). This cdf can be obtained by calculating the proportion of workplaces within the
area AQ that can be reached within travel time u from the point (x, y). Let ΩQ be the area
in which it is possible to reach within a certain travel time u from the point (x, y). Then,
G(u|x, y) is expressed by

G u x y
x y x y

x y x y
A

,
,

,
.( ) =

( )
( ) ( )

∫
∫

µ

µ

w w w w

w w w w

d d

d d
Q

Q

Ω
21

When workplaces are uniformly distributed (assumption (i) in Sec. 2), Eq. (21) reduces to
the following simple expression:

G u x y
x y L L

x y L L A
A

, ,( ) = = ( )
∫
∫

d d

d d

w w

w w

Q

Q

Q

Q

1 2

1 2

22
Ω Ω

where |ΩQ| and |AQ| are the area of ΩQ and AQ respectively. This indicates that the problem
of obtaining G(u|x, y) is reduced to the problem of calculating the area of ΩQ. The area |ΩQ
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| can be derived by drawing a contour of travel time u from the point (x, y) as depicted in
Fig. 5(a) and calculating the area of the inner region of the contour. This diamond-shaped
travel time contour, as is widely known in the literature, is 45° rotated square (ANJOMANI,
1981; OKABE et al., 2000) and can be obtained directly from the following equation:

x x y y u v− + − = ⋅ ( )w w , 23

where v is the travel speed of commuters. The analytical expression of |ΩQ| changes when
the contour collides with the five points on the boundary of AQ (illustrated as filled squares
in Fig. 5(b) and the time this collision occurs is referred to as the collision time). In the case
of Fig. 5(b), the order of appearance of the collision time is given by,

L y

v

y

v

L x

v

L y

v

L x

v

y

v

L x

v
2 1 2 1 1 24

− < < − < − + − < + − ( ),

so that G(u|x, y) is defined on the interval [0, y/v + (L1 – x)/v]. In the following, the
maximum value of u is denoted by umax (in the case of Fig. 5(b), umax = y/v + (L1 – x)/v).
It should be noted that the order of the collision time varies depending on the position (x,
y). Consequently, we have to consider all possible orders of the collision time u with each
producing different analytical expression of G(u|x, y). This leads to the partitioning of the
rectangle city into subregions with each corresponding to the one possible order of the
collision time u. In the case of a square city, there exist ten such subregions. By
differentiating G(u|x, y) with respect to u, we can derive g(u|x, y) as a function of (u, x, y).
See Appendix A for a more detailed description of the derivation procedure for g(u|x, y) and
examples of its analytical expressions.

Having obtained g(u|x, y), we next explain the method for deriving ξE
I(t|x, y) by using

Fig. 5.  (a) Region to which travel time is in the interval [u, u + du], and (b) equi-travel-time contours from the
point (x, y).
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this function. Consider the commuters whose workplaces are located within the gray area
in Fig. 5(a) to which travel time from the point (x, y) is in the small interval [u, u + du]. Let
h(t|u) be the conditional probability density function of the passage time t for the
commuters who have workplaces to which travel time from the point (x, y) is u. In order for
these commuters to reach at their workplaces at time t, they have to pass the point (x, y) at
time t – u as illustrated in Figs. 6(a) and (b). Thus, h(t|u) can be obtained by shifting the
arrival time distribution of commuters by u toward the negative direction of t axis:

h t u f t u( ) = +( ) ( ). 25

From a similar argument, the set of points (t, u) for the commuters who have
workplaces within AQ corresponds to the parallelogram (as illustrated by the bold line in
Fig. 7) in the T-U plane. Therefore, the proportion of commuters that can pass the point (x,
y) by the time t, which is the cdf of ξE

I(t|x, y) by its definition, is equal to the proportion of
commuters whose (t, u) points in the T-U plane are included in the gray area, D, as shown
in Fig. 7. This proportion can be obtained by integrating the joint probability density
function of (t, u) over the region D. This joint pdf can be expressed as h(t|u)·g(u|x, y),
considering that the proportion of commuters whose travel time from the point (x, y) is in
the interval [u, u + du] and who pass the point (x, y) during the time period [t, t + dt] is given
by

h t u t g u x y u f t u t g u x y u( ) ⋅ ( ) = +( ) ⋅ ( ) ( )d d d d, , . 26

From the above argument, the cdf of ξE
I(t|x, y) (we denote this by ΞE

I(t|x, y)) can be
expressed as follows:

ΞE
I d dt x y f t u g u x y t u

D
, , .( ) = +( ) ⋅ ( ) ( )∫∫ 27

Fig. 6.  (a) Arrival time distribution of commuters; and (b) passage time distribution at the point (x, y).
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Analytical expression of ΞE
I(t|x, y) can be obtained as a function of the position (x, y) and

time t. This derivation, however, involves a quite complicated procedure since ΞE
I(t|x, y)

must be expressed differently, depending on the four variables x, y, t, and a. By differentiating
ΞE

I(t|x, y) with respect to t, we can obtain ξE
I(t|x, y). See Appendix B for a more detailed

description of the derivation procedure for ξE
I(t|x, y).

The derivation procedure for ξE
II(t|x, y) is similar to that described above. Having

obtained ξE
I(t|x, y) and ξE

II(t|x, y), we can finally obtain the traffic flow density in the
easterly direction, pE(x, y; t), as follows:

p x y t q x y t x y q x y t x yE E
I

E
I

E
II

E
II, ; , , , , .( ) = ( ) ⋅ ( ) + ( ) ⋅ ( ) ( )ξ ξ 28

The traffic flow densities for the other three directions can be similarly derived. In a
rectangular model, however, the traffic flow density in the westerly direction, pW(x, y; t),
is directly obtained without repeating the similar calculation developed so far, by substituting
L1 – x into x in pE(x, y; t) by using the symmetry of the model. The same is true in the case
of the relationship between pN(x, y; t) and pS(x, y; t).

5.  Numerical Examples

In this section, we present some numerical examples of the traffic flow and traffic flow
density formulated in the above sections. Throughout this section, a square city of side
length L is assumed and parameter values of N = 1, L = 1, and v = 1 are adopted.

5.1.  Traffic flow
Figure 8 shows the traffic flow of (a) east-west direction; (b) north-south direction;

and (c) combination of all direction, qT(x, y), in a unit square city. Figure 8(c) indicates that
the city center has the maximum value even when the endpoints of trips are uniformly

Fig. 7.  The diagram for the derivation of ξE
I(t|x, y).
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distributed over the city. This implies that the city center has the greatest potential of traffic
congestion.

5.2.  Temporal distribution of traffic flow density
In the present and next subsections, some numerical examples of the combined (total)

traffic flow density,

p x y t p x y t p x y t p x y t p x y tT E W N S, ; , ; , ; , ; , ;( ) = ( ) + ( ) + ( ) + ( ) ( )29

are provided. In these two subsections, the arrival time distribution of commuters is given
by the uniform density function f(t) centered at k and defined on the time interval [k – a/
2, k + a/2] as illustrated in Fig. 9(a); and f(t) is given as follows:

f t
a

k a t k a( ) = − ≤ ≤ +( ) ( )1
2 2 30   / / .

Fig. 8.  Traffic flow in a unit square city: (a) east-west direction; (b) north-south direction; (c) all directions.

Fig. 9.  Illustration of (a) a uniform arrival time distribution; and (b) its numerical examples.
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The value of k can be seen as the average arrival time of commuters, while a can be regarded
as the measure of dispersion of the arrival time distribution.

This subsection explores temporal distribution of the traffic flow density at specified
observation points. Figure 10 shows temporal distributions of pT(x, y; t) (a) at the city center
(x, y) = (0.50, 0.50) and (b) at a suburban point (x, y) = (0.75, 0.75). In Figs. 10(a) and (b),
f(t) is given by the uniform density functions of four different arrival time durations: a =
0.5, a = 1.0, a = 1.5, and a = 2.0 (as shown in Fig. 9(b)), plus the Dirac delta function, i.e.
all commuters arrive at their workplaces at the same time. In Fig. 9(b), the average arrival
time k is taken at the same point among five cases and the origin of the time axis is defined
so that t = 0 coincides with the time of the first commuter leaving his or her home in the
case of a = 2.0. With the increase of the value of the arrival time duration a, we see that the
distribution of traffic is gradually dispersed. The maximum value of the traffic flow
density, and the time this value is observed are the very important measures for assessing
the impact of flexible working hours on commuter trip patterns. This approach becomes
possible only when incorporating the time variable explicitly as described so far.

Fig. 10.  Temporal distribution of combined traffic flow densities: (a) at (x, y) = (0.5, 0.5) and (b)at (x, y) = (0.75,
0.75) when the arrival time distributions are given by Fig. 9(b).
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5.3.  Spatial distribution of traffic flow density
We next consider the spatial distribution of traffic over the city, a snapshot in time,

when a time is specified. Figure 11 shows the spatial distribution of the traffic flow density,
pT(x, y; t), assuming that all commuters arrive at their workplace at the same time, t = 2.0
(the origin of the time axis is defined so that t = 0 coincides with the time of the first
commuter leaving his or her home), and the graphs are drawn from t = 0.1 up to t = 1.9 by
a step of time interval 0.1. Flow is first observed at the four corners of the square, since the
maximum travel time of the commuters has the maximum value at these four points
(journey length between the endpoints of the diagonal takes the largest value, 2L/v = 2). It

Fig. 11.  Spatial distribution of traffic flow density when all commuters arrive at their workplaces at the same
time, t = 2.0.
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Fig. 12.  Spatial distribution of traffic flow density for the uniform arrival time distribution in the case of a =
1.0.
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is interesting to note that the maximum value of traffic at a given time is not always
observed at the city center.

We next present an example of the spatial distribution of traffic when a uniform arrival
density defined on a finite length a is adopted. Figure 12 shows the spatial distribution of
the traffic flow density, pT(x, y; t), in the case of a = 1.0 with arrivals occurring in the
interval [2.0, 3.0] (the origin of the time axis is defined so that t = 0 coincides with the time
of the first commuter leaving his or her home), and the graphs are drawn from t = 0.1 up
to t = 2.9 by a step of time interval 0.1. In Fig. 12, the discontinuities observed in Fig. 11
are smoothed out, by the derivation procedure for the passage time distribution as explained
in Fig. 7. By comparing these two figures, we can observe the effect of the dispersion of
commuters’ destination arrival time on spatial-temporal traffic patterns.

6.  Discussion and Conclusion

In this paper, we presented an analytical method for deriving time dependent traffic
flow based on a rectangular grid network. With the introduction of the time variable, we
succeeded in describing the effect of commuters’ arrival time duration on the spatial-
temporal traffic patterns. We conclude this paper by examinig possible further work.

First, similar models assuming other types of metrics on the continuous plane can also
be developed. By comparing the results derived from various network assumptions,
geometrical characteristics of each network can be analyzed. We can also consider
extending the method developed on a continuous plane to the method defined on a network.
This extension allows us to analyze the spatio-temporal traffic patterns over the actual
network.

Second, generalization of the shape of the city from a rectangular case should be
considered. When we analyze traffic patterns in an actual city, the assumption of rectangular
city is rather restrictive. The relaxation of this assumption, however, is not so straightforward
a task, since there do not always exist two minimum-distance routes with only one turn
between two arbitrary points, when the shape of the city is extended from a rectangular
case. It is also interesting to consider the effect of the presence of geographical barrier, such
as rivers and lakes, across which a journey cannot be made. TANAKA and KURITA (2001)
considered a sector-shaped city with radial-arc networks to model the city that located near
the bay area and derived the spatial distribution of traffic that exhibits features of the city
with a geographical barrier. It is of interest to consider spatio-temporal traffic patterns
using city models with some barriers.

Finally, the assumption of independence between a home and workplace should be
relaxed, and the introduction of spatial interaction into our framework should be explored.
Spatial interaction models have been widely studied in the field of transportation studies
that concern with description and prediction of flows of people or commodities, etc.
between different locations in the city, with locations represented by discrete zones. ANGEL

and HYMAN (1976) formulated the continuous models of spatial interaction by extending
many of the concepts which have been restricted to the network representation of space. By
incorporating this notion into our spatio-temporal framework, we can obtain further
insights into spatio-temporal phenomena of transportation.
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Appendix A.  Examples of g(u|x, y)

We present analytical expressions for g(u|x, y) the pdf of travel time u from the point
(x, y) to the workplaces uniformly distributed within the area AQ. Examples corresponding
to the square case of Fig. 4(a) are provided. Figure A1(a) illustrates ten subregions with
each corresponding to one possible order of the collision times. When the center of the
travel time contour, (x, y), is in the gray area in Fig. A1(a), the order of appearance of the
collision time becomes,
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as shown in Fig. A1(b). Consequently, there exist five different expressions of g(u|x, y). As
we have already shown in Eq. (22), G(u|x, y), the cdf of g(u|x, y), can be obtained by
calculating the inner area of the contour in Fig. A1(b), divided by the area of AQ in the case
of uniformly distributed workplaces. By differentiating G(u|x, y) with respect to u, we
obtain g(u|x, y) as a linear function of travel time u. When the center of the travel time
contour (x, y) is in the gray area in Fig. A1(a), g(u|x, y) can be obtained as follows:
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Figure A2 shows (a) G(u|x, y) and (b) g(u|x, y) in the case of the unit square city and
the center of the travel time contour is taken at the point (0.2L, 0.6L) (L = 1, v = 1).

Appendix B.  Examples of ξ(t|x, y)

We present examples of the passage time distribution formulated in Subsec. 4.4.
Examples of ξE

I(t|x, y) corresponding to the square case of Fig. 4(a) are provided. First, we
show the derivation procedure when the commuters’ destination arrival time distribution
is given by the Dirac delta function centered at t = t0, namely, all the commuters arrive at
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their workplaces at t = t0.
Let us consider the commuters who have their workplace to which it takes travel time

u from the point (x, y). In order for the commuters to reach at their workplace at time t =
t0, they have to pass the point (x, y) at time t = t0 – u. The pdf of travel time u from the point
(x, y), however, is given by g(u|x, y), so that the pdf of passage time is given by

Fig. A1.  (a) Ten subregions each corresponding to one possible order of collision times; (b) travel time contour
from the point (0.2L, 0.6L), which is located in gray area in (a).

Fig. A2.  (a) The cdf and (b) the pdf of travel time u from the point (0.2L, 0.6L) to the workplaces uniformly
distributed within the area AQ.
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ξE
I B.1t x y g t t x y, , .( ) = −( ) ( )0

Figure B1 shows the example of the passage time distribution, ξE
I(t|x, y), when the

observation point is given by (x, y) = (0.2L, 0.6L), and the origin of the time axis is defined
so that t = 0 coincides with the time of the first commuter leaving his or her home, namely,
t0 = 2L/v (L = 1, v = 1).

We next present examples of ξE
I(t|x, y) when the commuters’ arrival time distribution,

f(t), is given by the uniform density function defined on the time interval [t0, t0 + a]. As we
have already shown in Subsec. 4.4, the cdf of ξE

I(t|x, y) can be obtained by Eq. (27). The
derivation of Eq. (27), however, is quite complicated since different analytical expressions
are obtained depending on the position (x, y), and time t, and the length of the destination
arrival time interval a.

We present some examples of ξE
I(t|x, y) when the observation point is given by (x, y)

= (0.2L, 0.6L). Figure B2(a) shows five examples of f(t) with different values of a. In Fig.
B2(b), five examples of ξE

I(t|x, y) corresponding to the examples of f(t) in Fig. B2(a), plus
ξE

I(t|x, y) shown in Fig. B1 are presented (L = 1 and v = 1). From Fig. B2(b), we can analyze
how the dispersion of arrival time duration affects the temporal distribution of ξE

I(t|x, y).
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