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Abstract. This paper develops a method for deriving a time-dependent traffic flow over
arectangular city with arectangular grid network, when acommuters’ destination arrival
time distribution is given by an arbitrary probability density function defined on afinite
range of the time axis. The introduction of the time variableis a great extension of prior
studies that deal only with the spatial distribution of traffic within a city. The model is
designed for the morning peak period of commuter traffic during which the greatest
overload of existing networks are observed. The results are useful in exploring the
geometrical properties of rectangular grid networks and analyzing the impact of flexible
working hours on commuter trip distributions.

1. Introduction

This paper presentsthe analytical and geometrical framework for constructing atime-
dependent traffic flow model based on a rectangular grid network. In the theory of
continuous traffic flow modeling, the primary assumptions are that the distributions of
endpoints of trips can be represented by continuous functions defined over the two-
dimensional plane and that continuousmovement ontheinfinitely denseideal ized networks
ispossible. These assumptionsfacilitate the analytical treatment of the problemsand allow
usto explore how spatial traffic patterns are influenced by (1) the shape of the city, (2) the
geometrical arrangement of the network, and (3) the distributions of endpoints of tripsover
thecity. The pioneering work was done by Reuben Smeed who emphasized theimportance
of the continuousapproach to transport problemsand laid the mathematical foundationsfor
analyzing traffic patternsinidealized cities (SMEED, 1961, 1963, 1968). After his series of
works, anumber of studiesthat deal withthespatial distribution of trafficinidealized cities
have appeared (HOLROYD, 1968; ANGEL and HYMAN, 1976; VAUGHAN, 1987). The basic
ideas of these studiesarethat, by deriving traffic asan analytical function of position under
given assumptions (network arrangement and distributions of endpoints of trips), the
location of potential congestion areas resulting from these assumptions can be analyzed.

165



166 K. TANAKA and O. KURITA

These studies, however, concern only with locational variations of the traffic flow and
ignore completely thetemporal fluctuations of thetraffic flow. The prime aim of this paper
is to extend prior studies of traffic flow models by incorporating the time variable
explicitly. Thisgreat extension allowsusto analyze spatial-temporal traffic patternsduring
the peak commuting period and provides usinsights into how the commuters’ destination
arrival time distribution influences traffic over the urban transport infrastructure.

We assume that transportation network consists of rectangular grid networks running
in two perpendicular directions and parallel to the sides of the rectangle. The shortest
distance on this rectangular networksis called the rectilinear distance (also known as the
Manhattan distance (BECKMAN, 1999) and the taxicab distance (KRAUSE, 1987)), and the
assumption of movement on this network is extensively used in a variety of disciplines,
such as urban economics (ANJOMANI, 1980), location theory (LARSON and ODONI, 1981,
BuTT and CAVALIER, 1997; BECKMAN, 1999), computational geometry (REZEND et al.,
1989), transport planning (VAUGHAN, 1987). Efficiency of movement on the rectangular
networks in comparison with other types of metrics has also been studied in VAUGHAN
(1987), KURITA (2001), and OIKAWA (2001). The spatial distribution of traffic over a
square city with rectangular networksistreatedin VAUGHAN (1987) and HOLROYD (1968).
Rodney Vaughan, who isamajor contributor to thisfield, summarized a number of works
on various models of the spatial traffic distribution, including his own contributions, and
examined the effects of various transport-network designs on the spatial traffic patterns.
Holroyd considered aninteresting problem of routing policy for relieving traffic congestion
inasquare city such that the number of travelers crossing each other’ sroutesisminimized.
Spatial traffic models assuming the radial-arc distance (TANAKA and KURITA, 2001), the
direct distance (OHTSU and KOSHIZUKA, 1998), and the minimum time distance (ANGEL
and HYMAN, 1976) have also been devel oped.

Therehavebeenvery few studiesthat explicitly considered thetimevariation of traffic
flow (PEARCE, 1975; TANAKA and KURITA, 2002). PEARCE (1975) considered a circular
city with radial-arc road networks and derived the distribution of traffic that includes the
time variable aswell asthe locational variables. TANAKA and KURITA (2002) developed a
similar model in the case of a square city with rectangular grid networks. These studies,
however, derived traffic distribution only in the very limited case in which all commuters
arrive at their workplaces at the same time. This paper generalizes this assumption and
assumes that the destination arrival time distribution is given by an arbitrary probability
density function defined on afinite range of the time axis. This generalization gives us a
new tool to analyze the relationship between the degrees of concentration of commuters’
destination arrival time and transport demand in space and time. The model developed in
this study can be used to obtain some policy implications of flexible working hours.

2. Model Description

In this section, we describe a general setting, ranging from the assumptions about the
city model to the assumptions about the movement of travelers. Let us consider a
rectangular city withsidelengthsL; and L, asdepictedin Fig. 1. Theposition of anarbitrary
point is denoted by (x, y) by the Cartesian coordinates with the left bottom corner of the
rectangle at the origin. For convenience, the positive side of Y axisistaken to be north with
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Fig. 1. A rectangular city with side lengths L, and L, and routes used between home and workplace.

the road networks running in east-west and north-south directions. For ease of expression,
one of the two endpoints of atrip will be called a home, the other a workplace, and their
positions will be expressed as P(x, Y,,) and Q(X,, Y,,) respectively.

2.1. Movement of travelers

We make the following assumptions about the movement of travelers:

(i) Homes and workplaces are uniformly and independently distributed over the
rectangular city.

(ii) Thereexist infinitely dense rectangular grid networks over the city.

(iii) Every commuter makes one’s way from home to workplace by one of the two
routes of the minimum trip length with only one turn (route | and Il in Fig. 1).

(iv) Each commuter chooses the route | or 11 between any two points with equal
probability.

(v) The speed on the network is a constant value v, irrespective of the position and
time.

The assumption (i) of uniform origins and destinationsiswidely used in the fields of
transportation planning, regional science, location theory, urban economicsand so on. This
idealized assumption, while not reflecting the actual situation in real cities, allows us to
treat the problem analytically and to discover geometric and morphological properties of
thenetwork under investigation. In addition, auniformmodel providesafirst approximation
of the more “real” model having nonuniform, location-dependent densities.

The minimum distance d(P, Q) between the point P(x,, y,) and Q(x,, V) in the
rectangular network is given by

d(P.Q) =[x, = Xu| +[Vn —Yul- )
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Fig. 2. An example of a probability density function of destination arrival time of commuters.

There exist, however, an infinite number of the minimum length routes between these two
points. The natural assumptions are that every commuter chooses the minimum length
route with the least turn with equal probability (assumption (iii) and (iv)).

2.2. Destination arrival time distribution of commuters

To uniquely determinethetraffic volume at agiven point and time, the distribution of
destination arrival time of commuters should be specified. This distribution is given by a
probability density function (pdf) defined on afinite range of the time axis and is denoted

by
f=1(t) (t,st<ty+a). (2)

We assume that all commuters follow the same destination arrival time distribution, f(t),
irrespective of the position of home and workplace. An example of f(t) isgivenin Fig. 2.
We can regard atimeinterval of length a as a measure of dispersion of destination arrival
time of commuters. It should be noted that by expressing the arrival time distribution asan
arbitrary pdf, it will be possible to analyze the relationship between the length of
commuting duration a and spatio-temporal traffic patterns during the peak commuting
period.

3. Definitions of Traffic Flow and Traffic Flow Density

Inthissection, weintroducethefunction that describestraffic volume passing through
apoint (x, y) at agiventimet, and thisfunctionisreferred to as the traffic flow density. To
derivethetraffic flow density, we also introducethe function that describesthetotal traffic
volume passing through a point (X, y), and this function is referred to as the traffic flow.
Precise definitions of these two functions are given in the following subsections.
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Fig. 3. Illustration of the definitions of traffic flow and traffic flow density.

3.1. Definition of traffic flow density

We denote the traffic flow density of easterly direction by p(x, y; t) which is the
function of timet as well as position (x, y), and we define pc(x, y; t) asfollows: Let o be
the number of commuters crossing the line segment C connecting the point (x, y;) and (X,
y,) during thetimeinterval t [ [t,, t,] asshowninFig. 3. Thetraffic flow density of easterly
direction, pe(X, y; t) is defined such that the following equation is satisfied:

e :Ltita I:iyl Pe(X, y; t)dydt. @)

This definition of the traffic flow density of easterly direction gives that pg(x, y; t)dydt is
the number of tripspassing though the small line segment with length dy located at the point
(%, y) during the small time period [t, t + dt], and its dimensions are given by number per
length per time. The traffic flow densities of westerly, northerly, and southerly directions
aresimilarly defined, and are denoted by py(X, y; t), pn(X, ; t), and pg(X, y; t), respectively.

3.2. Definition of traffic flow

We denote the traffic flow of easterly direction by gg(x, y) which is the function of
position (x, y) only, and define gg(X, y) asfollows: Let B¢ bethetotal number of commuters
crossing the line segment C as shown in Fig. 3. Thetraffic flow of easterly direction, gg(x,
y), is defined such that the following equation is satisfied:

Be=[" de(xy)dy. (4)

This definition of the traffic flow of easterly direction gives that g=(X, y)dy is the total



170 K. TANAKA and O. KURITA

number of commuters passing though the small line segment with length dy located at the
point (x, y), and its dimensions are given by number per length. The traffic flows of
westerly, northerly, and southerly directions are similarly defined, and are denoted by
aw(X ¥), an(X, Y), and qg(X, y), respectively. The function defined by Eq. (4) was first
proposed by HOLROYD (1968), and VAUGHAN (1987) calculated this function in a unit
square city with rectangular grid networks. It should be noted that the traffic flow density
weintroducedin Eq. (3) isanatural (but great) extension of the function defined by Eq. (4).
From Egs. (3) and (4), we see that the traffic flow density is the temporal density of the
traffic flow.

4. Formulation of Traffic Flow Density

Thissection describesthemethod for cal cul ating thetraffic flow density definedinthe
previous section. First, we formulate the rel ationship between the traffic flow density and
the traffic flow. Then, derivation methods for these two functions are explained.

4.1. Relationship between traffic flow density and traffic flow
From Egs. (3) and (4), the relationship between the traffic flow density of easterly
direction and the traffic flow of easterly direction is given as follows:

de(x.y) = jtTjTO Pe(x y:t)dt, (5)

where T, and T, represent the time that the first and the last commuter pass at the point (X,
y). We introduce the probability density function that describes the distribution of
commuters’ passage timet at the point (X, y) and denote this function by ég(t|x, y). The
meaning of thispdf isthat (t[X, y)dtisthe proportion of the number of commuters passing
at the point (x, y) during thetimeperiod [t, t + dt] intheeasterly direction to thetotal number
of commuters passing at the point (x, y). From Eq. (5) the traffic flow density can be
expressed as follows:

Pe (% yit) = e (%, ) CEe(tlx.y). (6)

We can confirm the validity of Eqg. (6) in thefollowing manner: Let ag be the number
of commuters passing though the small segment with length dy located at the point (X, y)
during the small time period [t, t + dt] in the easterly direction. From Eq. (3), ag isgiven
by pe(X, y; t)dydt. On the other hand, this can also be expressed as the total number of
commuters passing though this segment, times the proportion of commuters that pass
though this segment during the time interval [t, t + dt]. The former is given by gg(X, y)dy
from Eqg. (4) while the latter is equal to &g(t|x, y)dt by the definition of the probability
density function, &g(t]x, y). Thus, Eg. (6) can be obtained. The relationship defined by Eq.
(6) indicates that the traffic flow density is the temporal density of the traffic flow. In the
remainder of this section, we concentrate on devel oping methods for deriving ge(X, y) and

et y).
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Fig. 4. Paris of acceptable homes and workplaces for crossing the segment located at the point (X, y): (a) the
commuters turn after (x, y); (b) the commuters turn before (x, y).

4.2. Number of trips between two regions

To derive the traffic flow defined by Eq. (4), the methods for cal culating the number
of trips between any two regions in the city should be developed. We follow the method
described in VAUGHAN (1987), which gives the areal densities of homes and workplaces,
and we denote these densities by A(X, Vi) and (X, Y.,) respectively. Let n be the number
of commuters from a region S; to a region S,. From the assumption of independence
between a given home and workplace (assumption (i) in Sec. 2), the number of commuters,
n, between these two regionsis given by

N =N [ ACn: Y00 Y ) yn i, (7)

where N meansthetotal number of commuterswithinthecity. When the densities of homes
and workplaces are given by the uniform distributions (assumption (i) in Sec. 2), A(X;, Y1)
and p(x,,, v, are reduced to the following simple expressions:

A(Xn: Yin) =u(xw,yw)=i- )

4.3. Derivation of traffic flow

We explain the method for deriving the traffic flow in the easterly direction, gg(X, V),
in line with the method described by VAUGHAN (1987). First, consider the commuters
passing across the segment (y, y + dy) in the easterly direction at the point (x, y) as shown
in Figs. 4(a) and (b). There are only two types of path the commuters can use (with equal
probability inthiscase) to passthrough the segment. The commutersturn after crossing this
segment asin Fig. 4(a) or before crossing asin Fig. 4(b). In these figures shaded areas and
gray areas represent the areas of acceptable homes and workplaces for the commuters to
passthrough thissegment. L et usdenotethetraffic flow corresponding to Fig. 4(a) by gg' (x,
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y) and Fig. 4(b) by gg''(x, y). Then, the traffic flow in the easterly direction gg(x, y) is
expressed as a combination of these two:

e(xy) = ae(x.y) +ag (x,y). (9

The acceptabl e areas of homes Ap and workplaces A in Fig. 4(a) and Bp and By in Fig. 4(b)
are given as follows:

Ao = {xh Yn)0 < X, <X, y<yh<y+d;} (10)
Ao ={(%uYu)x < X <Ly 02y, <L, (11)
BP:{ Xn: Yn )0 < Xy € X, 0<yhsL2} (12)

{xw,yW x<x, <L, y<yW<y+d)} (13)

The number of commuters passing through the small segment in Figs. 4(a) and (b) isgiven
by ge'(x, y)dy and g=''(x, y)dy respectively by the definition of Eq. (4), and these can be
expressed as follows:

N L,
W= ool oA Yo Jbn Oy, (14)

qE X, y 2 J.;/W+d>;IXL1_XJ'yh oy, - (Xh yh)u(xw,yw)dxhdyhdxwdyw. (15)

Direct calculation of Egs. (14) and (15) gives g¢'(x, y) and gg''(x, y) as follows:

| NL,x(Ly — )
X, — =7, 16
qE( y) qE( y) 2(L1L2)2 ( )
Thus, we can obtain gg(X, y) from Egs. (9) and (16) as follows:
NL,x(Ly - )
Xy)= ———+~. 17
qE( y) (L1L2)2 ( )

Similar procedures described above give qy(X, ¥), dn(X, ¥), and gg(X, y) as follows:
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qw(x,y)=W )
an(x.y) = W (19)
(y) = Moz ~Y). 20)

(L)’

4.4. Derivation procedure for passage time distribution

We present the method for deriving the distribution of commuters’ passagetimeat the
point (X, y) when the destination arrival time distribution isgiven by Eq. (2). Let usdenote
this pdf corresponding to Fig. 4(a) by &'(t|x, y), and Fig. 4(b) by &' (t|x, y) respectively.
In the following, the derivation method for &'(t[x, y) is explained. The meaning of &£'(t|x,
y) isthat &' (t|x, y)dt is the proportion of commuters who have their workplaces within the
areaAq inFig. 4(a) and passthe point (x, y) duringasmall timeinterval [t, t + dt]. To obtain
&£\ (tx, y), we introduce the function g(ulx, y) that is defined as the probability density
function of travel timeufromthepoint (x, y) totheworkplacesuniformly distributed within
the area Ag. This pdf means g(ulx, y)du is the proportion of workplaces to which it takes
travel time [u, u + du] from the point (x, y).

We first derive cumulative distribution function (cdf) of g(ulx, y) and denote this by
G(ulx, y). This cdf can be obtained by calculating the proportion of workplaces within the
area Aq that can be reached within travel time u from the point (x, y). Let Qg be the area
in which it is possible to reach within a certain travel time u from the point (x, y). Then,
G(ulx, y) is expressed by

Jor HOtws Yor) O

Jo, HOtws Yoo ), 1)

G(u|x, y) =

When workplaces are uniformly distributed (assumption (i) in Sec. 2), Eq. (21) reducesto
the following simple expression:

o, O /Ll o

= : (22)
.[AQ dXWdyW/LlLZ |AQ|

G(u|x, y)

where |Qq| and |Aq| arethe areaof Qg and Ag respectively. Thisindicatesthat the problem
of obtaining G(ulx, y) isreduced to the problem of calculating the areaof Q. Thearea|Qq
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Fig. 5. (a) Regionto which travel timeisintheinterval [u, u + du], and (b) equi-travel-time contours from the
point (X, y).

| can be derived by drawing a contour of travel time u from the point (x, y) as depicted in
Fig. 5(a) and calculating the area of the inner region of the contour. This diamond-shaped
travel time contour, asiswidely knownintheliterature, is 45° rotated square (ANJOMANI,
1981; OKABE et al., 2000) and can be obtained directly from the following equation:

|x—xW|+|y—yW| =u N, (23)

where v isthetravel speed of commuters. The analytical expression of [Qg| changes when
the contour collideswith the five points on the boundary of Aq (illustrated asfilled squares
inFig. 5(b) and thetimethiscollision occursisreferred to asthe collisiontime). In the case
of Fig. 5(b), the order of appearance of the collision timeis given by,

L2—y<X<L1—x<Lz—y+L1—x<X+L1—x' (24)
\ \ \ \ \ v v

so that G(u[x, y) is defined on the interval [0, y/v + (L; — X)/V]. In the following, the
maximum value of u is denoted by u,, (in the case of Fig. 5(b), U, = YV + (L1 — X)/V).
It should be noted that the order of the collision time varies depending on the position (X,
y). Consequently, we have to consider all possible orders of the collision time u with each
producing different analytical expression of G(u|x, y). Thisleads to the partitioning of the
rectangle city into subregions with each corresponding to the one possible order of the
collision time u. In the case of a square city, there exist ten such subregions. By
differentiating G(ulx, y) with respect to u, we can derive g(ulx, y) asafunction of (u, x, y).
See Appendix A for amoredetailed description of thederivation procedurefor g(ulx, y) and
examples of its analytical expressions.

Having obtained g(ulx, y), we next explain the method for deriving &' (t|x, y) by using
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Fig. 6. (a) Arrival time distribution of commuters; and (b) passage time distribution at the point (X, y).

this function. Consider the commuters whose workplaces are located within the gray area
in Fig. 5(a) towhich travel time from the point (x, y) isinthe small interval [u, u+ du]. Let
h(tlu) be the conditional probability density function of the passage time t for the
commuterswho have workplacesto which travel timefrom the point (X, y) isu. In order for
these commutersto reach at their workplaces at timet, they have to pass the point (x, y) at
timet —u asillustrated in Figs. 6(a) and (b). Thus, h(t|u) can be obtained by shifting the
arrival time distribution of commuters by u toward the negative direction of t axis:

h(tju) = f(t +u). (25)

From a similar argument, the set of points (t, u) for the commuters who have
workplaces within A, corresponds to the parallelogram (as illustrated by the bold linein
Fig. 7) inthe T-U plane. Therefore, the proportion of commutersthat can pass the point (X,
y) by thetimet, which isthe cdf of &'(t|x, y) by its definition, is equal to the proportion of
commuters whose (t, u) pointsin the T-U plane are included in the gray area, D, as shown
in Fig. 7. This proportion can be obtained by integrating the joint probability density
function of (t, u) over the region D. This joint pdf can be expressed as h(t[u)-g(u[x, y),
considering that the proportion of commuters whose travel time from the point (x, y) isin
theinterval [u, u+ du] and who passthe point (x, y) during thetimeperiod [t, t + dt] isgiven
by

h(tju)dt Co(ulx, y)du = f(t +u)dt Co(ux, y)du. (26)

From the above argument, the cdf of &Z(t|x, y) (we denote this by =¢'(t|x, y)) can be
expressed as follows:

Ze(txy) = [J, f(t+u) [gy(ulx, y)dtdu. (27)
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Fig. 7. The diagram for the derivation of &Z'(t[x, y).

Analytical expression of =¢!(t|x, y) can be obtained as a function of the position (x, y) and
timet. This derivation, however, involves a quite complicated procedure since =¢'(t|x, y)
must beexpressed differently, depending onthefour variablesx, y, t, and a. By differentiating
=£'(t]x, y) with respect to t, we can obtain &:'(t|x, y). See Appendix B for a more detailed
description of the derivation procedure for &'(t[x, y).

The derivation procedure for &''(t|x, y) is similar to that described above. Having
obtained &£'(t]x, y) and &''(t|x, y), we can finally obtain the traffic flow density in the
easterly direction, pg(x, y; t), as follows:

e (%, y;1) = ae (x,y) R (b ) + ae (% v) e (1 ) (28)

The traffic flow densities for the other three directions can be similarly derived. In a
rectangular model, however, the traffic flow density in the westerly direction, py (X, y; t),
isdirectly obtai ned without repeating the similar cal cul ation devel oped sofar, by substituting
L, —xintoxin pg(X, y; t) by using the symmetry of the model. The sameistruein the case
of the relationship between py(x, y; t) and pg(X, V; t).

5. Numerical Examples

Inthissection, we present some numerical examplesof thetraffic flow and traffic flow
density formulated in the above sections. Throughout this section, a square city of side
length L is assumed and parameter valuesof N=1, L =1, and v = 1 are adopted.

5.1. Traffic flow

Figure 8 shows the traffic flow of (a) east-west direction; (b) north-south direction;
and (c) combination of all direction, gr(X, y), inaunit square city. Figure 8(c) indicatesthat
the city center has the maximum value even when the endpoints of trips are uniformly
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Fig. 8. Traffic flow in aunit square city: (a) east-west direction; (b) north-south direction; (c) all directions.
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Fig. 9. Illustration of (a) auniform arrival time distribution; and (b) its numerical examples.

distributed over thecity. Thisimpliesthat the city center hasthe greatest potential of traffic
congestion.

5.2. Temporal distribution of traffic flow density

In the present and next subsections, some numerical examples of the combined (total)
traffic flow density,

pr(xvit) = pe(x vit) + pu (X vit) + pu (%, vit) + ps(x.y:t) (29)

are provided. In these two subsections, the arrival time distribution of commutersisgiven
by the uniform density function f(t) centered at k and defined on the time interval [k — a/
2, k+ a/2] asillustrated in Fig. 9(a); and f(t) is given as follows:

f(t)=

Q|-

(k-al2<t<k+al2). (30)
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Fig. 10. Temporal distribution of combined traffic flow densities: (a) at (x, y) = (0.5, 0.5) and (b)at (x, y) = (0.75,
0.75) when the arrival time distributions are given by Fig. 9(b).

Thevalueof kcan be seen astheaveragearrival time of commuters, whilea can beregarded
as the measure of dispersion of the arrival time distribution.

This subsection explorestemporal distribution of the traffic flow density at specified
observation points. Figure 10 showstemporal distributionsof pr(x, y; t) (a) at thecity center
(%, ¥) =(0.50, 0.50) and (b) at a suburban point (x, y) = (0.75, 0.75). In Figs. 10(a) and (b),
f(t) is given by the uniform density functions of four different arrival time durations: a =
0.5,a=1.0,a=1.5,anda= 2.0 (asshown in Fig. 9(b)), plusthe Dirac deltafunction, i.e.
all commutersarrive at their workplaces at the sametime. In Fig. 9(b), the average arrival
timek istaken at the same point among five cases and the origin of thetime axisis defined
so that t = 0 coincides with the time of the first commuter leaving his or her home in the
caseof a=2.0. With theincrease of the value of the arrival time duration a, we see that the
distribution of traffic is gradually dispersed. The maximum value of the traffic flow
density, and the time this value is observed are the very important measures for assessing
the impact of flexible working hours on commuter trip patterns. This approach becomes
possible only when incorporating the time variable explicitly as described so far.
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Fig. 11. Spatial distribution of traffic flow density when all commuters arrive at their workplaces at the same
time, t = 2.0.

5.3. Spatial distribution of traffic flow density

We next consider the spatial distribution of traffic over the city, a snapshot in time,
when atimeisspecified. Figure 11 showsthe spatial distribution of thetraffic flow density,
pr(X, y; t), assuming that all commuters arrive at their workplace at the sametime, t = 2.0
(the origin of the time axis is defined so that t = O coincides with the time of the first
commuter leaving his or her home), and the graphs are drawn fromt=0.1uptot=1.9 by
astep of timeinterval 0.1. Flow isfirst observed at the four corners of the square, sincethe
maximum travel time of the commuters has the maximum value at these four points
(journey length between the endpoints of the diagonal takesthe largest value, 2L/v = 2). It
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Fig. 12. Spatial distribution of traffic flow density for the uniform arrival time distribution in the case of a =
1.0.
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is interesting to note that the maximum value of traffic at a given time is not always
observed at the city center.

We next present an exampl e of the spatial distribution of traffic when auniformarrival
density defined on afinite length a is adopted. Figure 12 shows the spatial distribution of
the traffic flow density, p:(X, y; t), in the case of a = 1.0 with arrivals occurring in the
interval [2.0, 3.0] (theorigin of thetime axisisdefined so that t = 0 coincides with thetime
of the first commuter leaving his or her home), and the graphs are drawn fromt = 0.1 up
tot=2.9 by astep of timeinterval 0.1. In Fig. 12, the discontinuities observed in Fig. 11
aresmoothed out, by thederivation procedurefor the passage timedistribution asexplained
in Fig. 7. By comparing these two figures, we can observe the effect of the dispersion of
commuters’ destination arrival time on spatial-temporal traffic patterns.

6. Discussion and Conclusion

In this paper, we presented an analytical method for deriving time dependent traffic
flow based on arectangular grid network. With the introduction of the time variable, we
succeeded in describing the effect of commuters' arrival time duration on the spatial-
temporal traffic patterns. We conclude this paper by examinig possible further work.

First, similar model s assuming other types of metrics on the continuous plane can also
be developed. By comparing the results derived from various network assumptions,
geometrical characteristics of each network can be analyzed. We can also consider
extending the method devel oped on acontinuous planeto the method defined on anetwork.
This extension allows us to analyze the spatio-temporal traffic patterns over the actual
network.

Second, generalization of the shape of the city from a rectangular case should be
considered. Whenwe analyzetraffic patternsinan actual city, theassumption of rectangul ar
city israther restrictive. Therelaxation of thisassumption, however, isnot so straightforward
atask, since there do not always exist two minimum-distance routes with only one turn
between two arbitrary points, when the shape of the city is extended from a rectangular
case. Itisalsointeresting to consider the effect of the presence of geographical barrier, such
asrivers and lakes, across which ajourney cannot be made. TANAKA and KURITA (2001)
considered asector-shaped city with radial-arc networksto model the city that located near
the bay area and derived the spatial distribution of traffic that exhibits features of the city
with a geographical barrier. It is of interest to consider spatio-temporal traffic patterns
using city models with some barriers.

Finally, the assumption of independence between a home and workplace should be
relaxed, and theintroduction of spatial interaction into our framework should be explored.
Spatial interaction models have been widely studied in the field of transportation studies
that concern with description and prediction of flows of people or commodities, etc.
between different locationsinthecity, with|ocationsrepresented by discretezones. ANGEL
and HYMAN (1976) formulated the continuous models of spatial interaction by extending
many of the conceptswhich have beenrestricted to the network representation of space. By
incorporating this notion into our spatio-temporal framework, we can obtain further
insights into spatio-temporal phenomena of transportation.
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Appendix A. Examples of g(u|x, y)

We present analytical expressions for g(u|x, y) the pdf of travel time u from the point
(%, y) tothe workplaces uniformly distributed within the area A,. Examples corresponding
to the square case of Fig. 4(a) are provided. Figure A1(a) illustrates ten subregions with
each corresponding to one possible order of the collision times. When the center of the
travel time contour, (X, y), isinthegray areain Fig. A1(a), the order of appearance of the
collision time becomes,

L—y<X<L—x< L—y+L—x<X+L—y’
v v v % v % v

(A.2)

asshowninFig. A1(b). Consequently, there exist five different expressionsof g(ufx, y). As
we have already shown in Eq. (22), G(ulx, y), the cdf of g(u|x, y), can be obtained by
calculating theinner area of the contour in Fig. A1(b), divided by the areaof Ag inthe case
of uniformly distributed workplaces. By differentiating G(u[x, y) with respect to u, we
obtain g(ulx, y) as a linear function of travel time u. When the center of the travel time
contour (X, y) isinthe gray areain Fig. A1(a), g(ulx, y) can be obtained as follows:

0 2viu L-y
DDL(L—X)' v
Dv(vu+L—y)’ L-y y
0 L(L-x) v v
H v y y
o) = VU
Ov(3L - 2vu - 2X) L-x_,
T — <
o LLt-x v v v
(L -vu-x+y) L-y L-x y L-x
" < .

B LL-x v v VAR

Figure A2 shows (a) G(u|x, y) and (b) g(u|x, y) in the case of the unit square city and
the center of the travel time contour is taken at the point (0.2L, 0.6L) (L =1, v = 1).

Appendix B. Examples of &(t[x, y)

We present examples of the passage time distribution formulated in Subsec. 4.4.
Examplesof &' (t|x, y) corresponding to the square case of Fig. 4(a) are provided. First, we
show the derivation procedure when the commuters’ destination arrival time distribution
is given by the Dirac delta function centered at t = t;, namely, all the commuters arrive at
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their workplaces at t = t;.

L et us consider the commuterswho have their workplace to which it takestravel time
u from the point (X, y). In order for the commuters to reach at their workplace at timet =
to, they haveto passthe point (x, y) at timet = t,—u. The pdf of travel time u from the point
(%, y), however, is given by g(ulx, y), so that the pdf of passage timeis given by

®u=L—y =L—y L-x
/A i
y=-x/2+L y=% d ’,," \\\\
. . :’ Qu=
(02L,06L) KX (x ) =(0.2L,0.6L)

4,

(a) (b)

Fig. Al. (&) Ten subregions each corresponding to one possible order of collision times; (b) travel time contour
from the point (0.2L, 0.6L), which islocated in gray areain (a).

G(ulx,y) gulx,y)

1 12
0.8 0;
0.6 06
0'4 0.4
0.2 02

u
02 04 06 08 1 12 14 02 04 06 08 1 12 14
(2) (®)

Fig. A2. (a) The cdf and (b) the pdf of travel time u from the point (0.2L, 0.6L) to the workplaces uniformly
distributed within the area Aq.
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Fig. B1. An example of the passage time distribution, &£'(t|x, y) for the Dirac delta function, when the
observation point is given by (x, y) = (0.2L, 0.6L).

&t y) = ofto ~t}x,y). (B.)

Figure B1 shows the example of the passage time distribution, &£'(t]x, y), when the
observation point isgiven by (x, y) = (0.2L, 0.6L), and the origin of thetime axisisdefined
so that t = 0 coincides with the time of the first commuter leaving his or her home, namely,
tp=2L/V(L=1,v=1).

We next present examples of &/ (t|x, y) when the commuters’ arrival time distribution,
f(t), isgiven by the uniform density function defined on the timeinterval [t,, t,+ a]. Aswe
have already shown in Subsec. 4.4, the cdf of &'(t|x, y) can be obtained by Eq. (27). The
derivation of Eq. (27), however, isquite complicated since different analytical expressions
are obtained depending on the position (X, y), and time t, and the length of the destination
arrival time interval a.

We present some examples of &!(t[x, y) when the observation point is given by (x, y)
=(0.2L, 0.6L). Figure B2(a) shows five examples of f(t) with different values of a. In Fig.
B2(b), five examples of &£'(t|x, y) corresponding to the examples of f(t) in Fig. B2(a), plus
&:\(tJx, y) showninFig. Bl arepresented (L = 1and v = 1). From Fig. B2(b), we can analyze
how the dispersion of arrival time duration affects the temporal distribution of &Z'(t|x, y).
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