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Abstract.  Statistical distributions of geometrical characteristics concerning the Poisson
Voronoi cells, namely, Voronoi cells for the homogeneous Poisson point processes, are
numerically obtained in two- and three-dimensional spaces based on the computer
experiments. In this paper, ten million and five million independent samples of Voronoi
cells in two- and three-dimensional spaces, respectively, are generated. Geometrical
characteristics such as the cell volume, cell surface area and so on, are fitted to the
generalized gamma distribution. Then, maximum likelihood estimates of parameters of
the generalized gamma distribution are given.

1.  Introduction

Tessellations of space for a given set of points into non-overlapping cells play an
important role in the fields of science on form and stochastic geometry.

Among many possibilities of tessellations, the Voronoi tessellation might be the most
popular and the most useful (see Fig. 1). The shape of cells of Voronoi tessellations clearly
reflects the manner of configuration of points. Namely, some of the statistical properties
of spatial point patterns are reflected into the properties of geometrical structure of the
corresponding Voronoi tessellation. Thus, the Voronoi tessellation is playing an important
role in the science on form.

From a point of view of application, the Voronoi cells are very useful as a geometrical
model of crystal grains, biological cells, and so on. Voronoi cells are also useful as a tool
for numerical computations.

We define the Poisson Voronoi cells as the typical Voronoi cell based on the
homogeneous Poisson point processes. Recall that the homogeneous Poisson point process
plays a role as the standard model for point patterns. Namely, statistical properties of
Poisson point process are often used as the null hypothesis against the corresponding
properties of competitive point process models.
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This situation is applicable to the Voronoi tessellation for the homogeneous Poisson
point processes. Hence, it is important to know the statistical properties of Poisson Voronoi
cells in order to compare the properties of Voronoi cells for other point patterns.

In spite of the above importance, the statistical properties of Poisson Voronoi cells are
not much investigated, mainly because it is difficult to get them theoretically although
some efforts to obtain expected values of certain kinds of properties have been done. Then,
it needs an investigation with the aid of computer simulation.

In this paper, we present our results for the statistical distributions of Poisson Voronoi
cells in two and three dimensional spaces. In the next section, previous efforts which had
been made so far are briefly reviewed. In Section 3, we give the method which we applied
in order to make independent samples of Poisson Voronoi cells. Section 4 shows the result
of our computer simulations and the fitting several properties to the generalized gamma
distribution. In the final section, we give some comments on our results together with
previous results by other researchers.

2.  Previous Works of Poisson Voronoi Cells

Much work has been done on this subject so far from theoretical point of view and from
the simulation based aspect. Until now, theoretically known results about the properties of
Poisson Voronoi cells are not enough from our stand point of getting their statistical
distributions. For an example, let us consider the number of edges N of a Poisson Voronoi
cell in the plane. It is known that E[N] = 6 holds asymptotically (this is valid for a Voronoi

Fig. 1.  A sample of Voronoi tessellation. Dotted points represent generating points. Polygon for each point is
determined by the perpendicular bisectors between the point and its neighbouring points.
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cell of any stochastic point processes). But the probability density which N for Poisson
Voronoi cells should obey is not theoretically known yet. The situation is similar for other
characteristic (let it be X) of Poisson Voronoi cells and, in most cases, its statistical
properties are partly known through the few lower moments such as E[X], E[X2] and so on
(see MØLLER (1994), for instance, as a review of mainly the theoretical aspect).

In order to investigate the spatial statistics of point patterns by using Voronoi cells, it
is desirable to know all of the statistical properties of Poisson Voronoi cells as the standard.
For that purpose, we inevitably take a computer simulation approach. There are many
efforts in this direction, but we mention here only a few. HINDE and MILES (1980) have
conducted a computer simulation of Poisson Voronoi cells in two dimensional space. The
number of samples of their simulation was two million, which has been a record until now.
As the characteristics of Poisson Voronoi polygons, HINDE and MILES (1980) reported the
number of edges N, the area A, the perimeter S and the internal angle θ of a typical cell. They
obtained the first four moments of N, A, S and θ, and then fitted their histograms to the three-
parameter generalized gamma density.

In case of three-dimensional Poisson Voronoi cells, TANEMURA (1988) reported the
statistical properties such as the distribution of the volume V and the number of faces F
based on a hundred thousand sample of Voronoi polyhedra. More recently, KUMAR et al.
(1992) presented the results of properties of three-dimensional Poisson Voronoi tessellation
based on 358,000 simulated cells. They reported on the statistical properties of F, V, S
(surface area), B (total edge length) of a Poisson Voronoi polyhedron and fitted their
histograms to the two-parameter generalized gamma density. Note the term “density” used
here is meant by the “probability density function”. We often use this notation throughout
this paper.

3.  Methods

In order to make independent samples of Voronoi cells for homogeneous Poisson
processes, we use the following method. Although the two-dimensional terminology is
used, the extension to other dimensions will be easy.

First, let R be the region where the generating points are distributed, |R| be the area of
the region. Let ρ be the intensity of the Poisson point process. We generate a homogeneous
Poisson point pattern inside R with intensity ρ. Then, the number of points inside R will
obey the Poisson distribution with mean ρ|R|. Next, we select a point at random among the
distributed points and construct a Voronoi cell of the selected point. Details of the
procedure are the following:

(1) Letting n be the total number of independent samples, we set the number of points,
m, inside R according to the Poisson distribution with mean ρ|R| theoretically for each
sampling. Then, we generate m points inside R uniformly at random.

(2) Select a point at random among m points. Move the selected point to the center
of the region R by keeping relative positions to other points by translations and by applying
periodic boundary conditions. Then, construct the Voronoi polygon of the central point
(see Fig. 2). If the union of circumcircles of Delaunay triangles which include the central
point as one of vertices is included in R (see Fig. 3), the process for this sampling ends,
otherwise we extend the region R (let the extended region be R′) and generate a new set of
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points with the same intensity ρ, select a central point, move other points such that the
selected point is at the center of R′ by applying the same procedure as above, and then
construct the Voronoi polygon of central point. Repeat the process until the union of
circumcircles of Delaunay triangles satisfy the above condition.

This procedure is basically due to HINDE and MILES (1980). In the paper of HINDE and
MILES (1980), they have set ρ = 100 in two-dimensional case. In the present simulations,
we set ρ = 200 for two-dimensional space, and ρ = 500 for three-dimensional space. By
these settings, the process of extension of the region R in the second step of the above
procedure did not actually happen.

Algorithm for constructing Voronoi cell of the central point
Let us mention about the details of the algorithm for constructing the central Voronoi

cell by using the example of two-dimensional space. Let us remind, for each realization of
homogeneous Poisson point patterns, we are interested to construct a Voronoi polygon for
a single central point as indicated by the shaded area in Fig. 2.

For that purpose, the algorithm devised by TANEMURA et al. (1983) is the most
suitable. In their algorithm, all of the Delaunay triangles which include the central point as
a vertex are efficiently constructed (see Fig. 3, for example). The computational complexity
of this algorithm for constructing a single Voronoi polygon is O(m), where m is the existing
number of points in the current point pattern.

Here, we recall a set of efficient algorithms which are based on the results of the field
of ‘computational geometry’ (see, for the existing algorithms OKABE et al. (2000), for

Fig. 2.  A sample of Poisson Voronoi cell. Shaded polygon is the Voronoi polygon which is successfully made.
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instance). The computational complexity of most of them is known as O(m logm) for
constructing all of the Voronoi polygons for a given point pattern. They are surely efficient
for the tessellation by Voronoi polygons. However, most of the algorithms based on the
computational geometry construct Voronoi cells of respective points by the incremental
method or by the divide-and-conquer method. This means that, according to them, the
proper Voronoi cell of a specified point is obtained only in the final step after O(m logm)
operations have been done.

Thus, the algorithm by TANEMURA et al. (1983) is suitable and sufficiently effective
for our purpose.

4.  Results

4.1.  Poisson Voronoi cells in two dimensions
As was indicated, we have done a simulation of two-dimensional Poisson Voronoi

cells with ten million independent samples, namely, n = 10,000,000. This value of n was
selected in order to get more information about the statistical properties of Poisson Voronoi
cells than the results of HINDE and MILES (1980) where n = 2,000,000 was used.

Our results are classified into three categories:
1. Histograms of the reduced area a, the reduced perimeter s, the number of edges

N of Poisson Voronoi cells. Here, the reduced area a is defined by a = ρA, A being the area
of a Voronoi cell. Then, we can expect E[a] = 1. The reduced perimeter s is determined by

Fig. 3.  A sample of Delaunay triangles corresponding to the Poisson Voronoi cell in Fig. 2. Lightly shaded
circles represent the union of circumscribing circles of Delaunay triangles which construct the central
Voronoi cell.
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Fig. 4.  Observed histogram of the reduced area of 2D Poisson Voronoi cells for ten million samples (dots) and
its estimated probability density (line).

Fig. 5.  Observed histogram of the reduced perimeter of 2D Poisson Voronoi cells for ten million samples (dots)
and its estimated probability density (line).
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the relation s = ρ S/4, where S is the perimeter of a Voronoi cell. In this case, we can
expect also E[s] = 1, since it is known that, for a homogeneous Poisson point process, E[S]

= 4/ ρ  holds (MILES, 1970).
Also histograms of the area aN and the perimeter sN of Poisson Voronoi cells for a given

number of edges are given.
2. Moments of a, s, N, and aN.
3. Parameters a, b, c of generalized Gamma distribution

f x a b c
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fitted to the histograms of a, s, N, aN and sN.

Histograms
Dotted points in Figs. 4 and 5 represent the observed histograms of, respectively, the

area a and the perimeter s of two-dimensional Poisson Voronoi cells. The class intervals
for a and s were chosen as 0.01 which gave 700 classes for a and 300 classes for s. It is
because the observed minimum and the maximum values of a and s were, respectively, amin
= 0.002059 and amax = 6.265011 and smin = 0.059381 and smax = 2.439198.

Moreover, dotted points in Fig. 6 indicate the histogram of observed number of edges
N of Poisson Voronoi cells. In Table 1, the histograms of N for the present result together
with the result of HINDE and MILES (1980) are given.

Fig. 6.  Observed and estimated histogram of the number of edges of 2D Poisson Voronoi cells .
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Fig. 7.  (a) Observed histogram (open circle) and estimated density (line) of the area of 2D Poisson Voronoi cells
for the number of edges 3, 4, 5, and 6. (b) Observed histogram (open circle) and estimated density (line) of
the area of 2D Poisson Voronoi cells for the number of edges 7, 8, 9, and 10.
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Open circles in Figs. 7a and 7b show the observed histograms of the area of 2-D
Poisson Voronoi cells for respective number of edges N.

Comparison of pN for N = 3 between the observation and theoretical computation
We observed, as can be seen in Table 1, that the relative frequency pN for N = 3 is about

Fig. 7.  (continued).



230 M. TANEMURA

p3 ~ 0.01125 by our simulation result. Recently, HAYEN and QUINE (2000a, b) presented
an integral formula for p3, namely, the proportion of triangles in a Poisson Voronoi
tessellation.

By numerical integration of the formula, they first obtained a value p3 ~ 0.0112354 to
7 decimal places (HAYEN and QUINE, 2000a) by performing five-fold integrations. In their
subsequent paper (HAYEN and QUINE, 2000b), a revised value of

p3 ~ 0.0112400129

to 10 decimal places was obtained by reducing the number of variables.
It is interesting that the above value of p3 is quite coincident with our corresponding

value in Table 1. This result suggests the validity of our simulation of 2-D Poisson Voronoi
cells.

Estimated moments
The first four moments of variables N, a and s are obtained as given in Tables 2a–c.

In Tables 2a–c, µk′ of a random variable X are defined by µk′ ≡ E[Xk] (k = 1, 2, ...) and µk
are defined by µk ≡ E[(X – µ)k] for k = 2, 3, ..., where µ = E[X]. Also the skewness β1 and
the kurtosis β2 are defined, respectively, by β1 = µ3/σ3 and β2 = µ4/σ4 – 3, where σ2 = µ2
is the variance.

Let us note that for the number of edges, we can expect E[N] = 6 asymptotically (see
for example, MILES (1970)). As regards the second moment µ2′ of reduced area a, GILBERT

(1962) has presented a formula which includes a double integral and has given the value
µ2′ = 1.280 by numerical integration. We notice its agreement with our value µ2′ = 1.28031
in Table 2b.

Tables 3a and 3b show the moments of the area of 2-D Poisson Voronoi cells
conditioned on the number of edges N (see Figs. 7a and 7b for their histograms). Table 3a

Table 1.  Number of edges of 2-D Poisson Voronoi cell.

N nN p̂N p̂N  (HINDE and MILES, 1980)

3 112459 0.01125 0.01131
4 1068516 0.10685 0.1071
5 2594112 0.25941 0.2591
6 2947884 0.29479 0.2944
7 1988422 0.19884 0.1991
8 900262 0.09003 0.0902
9 296342 0.02963 0.0295

10 74261 0.00743 0.00743
11 14925 0.00149 0.00149
12 2462 0.00025 0.00025
13 312 0.00003 0.00003
14 39 0.00000 0.00000
15 4 0.00000 0.00000
16 0 0.00000 0.00000
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Table 2(a).  Estimated moments of the number of edges N of 2-D Poisson Voronoi cells in comparison with the
result of HINDE and MILES (1980).

Table 2(b).  Estimated moments of the reduced area a of 2-D Poisson Voronoi cells in comparison with the result
of HINDE and MILES (1980).

Table 2(c).  Estimated moments of the reduced perimeter s of 2-D Poisson Voronoi cells in comparison with the
result of HINDE and MILES (1980).

Present HINDE and MILES (1980)

µ1′ 5.99984 5.9997

µ2′ 37.77860 37.778

µ3′ 249.06111 249.07

µ4′ 1715.31919 1715.4

σ 1.334350 1.335
n–1.2σ 0.000422 0.00094
β1 0.43360 0.432
β2 0.20702 0.206

Present HINDE and MILES (1980)

µ1′ 1.00006 1.000217

µ2′ 1.28031 1.2812

µ3′ 1.99303 1.9969

µ4′ 3.64852 3.6638

σ 0.52933 0.5299
n–1.2σ 0.000167 0.00037
β1 1.02640 1.033
β2 1.55980 1.599

Present HINDE and MILES (1980)

µ1′ 1.000052 1.000092

µ2′ 1.05922 1.0594

µ3′ 1.18023 1.1807

µ4′ 1.37622 1.3772

σ 0.24313 0.2433
n–1.2σ 0.000077 0.00017
β1 0.18959 0.193
β2 –0.02234 –0.017
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N 3 4 5 6

nN 112459 1068516 2594112 2947884
µ1′ 0.34479 0.55810 0.77420 0.99621

µ2′ 0.16325 0.40137 0.73723 1.18061

µ3′ 0.09883 0.35501 0.83592 1.62589

µ4′ 0.07324 0.37380 1.10209 2.55601

σ 0.21063 0.29982 0.37128 0.43379
n–1.2σ 0.00063 0.00029 0.00023 0.00025
β1 1.27827 1.13780 1.01056 0.91678
β2 2.58398 1.99061 1.57440 1.30334

N 7 8 9 10

nN 1988422 900262 296342 74261
µ1′ 1.22181 1.45418 1.68690 1.92214

µ2′ 1.73336 2.40957 3.19728 4.10391

µ3′ 2.80500 4.48590 6.73178 9.64369

µ4′ 5.10613 9.27567 15.59465 24.74464

σ 0.49043 0.54307 0.59301 0.63977
n–1.2σ 0.00035 0.00057 0.00109 0.00235
β1 0.84271 0.77537 0.72819 0.69470
β2 1.10344 0.90388 0.78615 0.71529

Table 3(a).  Estimated moments of the area aN of 2-D Poisson Voronoi cells for given number of edges N.

Table 3(b).  Estimated moments of the area aN of 2-D Poisson Voronoi cells for given number of edges N.

is for aN where N = 3, 4, 5 and 6, while Table 3b is the moments of aN for N = 7, 8, 9 and
10.

Fitting the generalized gamma distribution to the histograms
We tried to fit the observed histograms of various geometrical quantities of 2-D

Poisson Voronoi cells to a certain flexible density function with a few parameters. Among
a vast possibilities, we have selected the three-parameter generalized gamma distribution
(1) since it will represent a wide range of distribution with a single mode and with an
exponential decay for a large value. Moreover, that the range of its variable is limited to
(0, ∞) is suitable for our purpose, since we are concerned with variables which take only
positive values.

In order to estimate the parameters of the three-parameter generalized gamma
distribution, we adapted the maximum likelihood estimation. Let L(a, b, c |{X}) be the log-
likelihood of parameters a, b and c for the observed data {X}. Then, we get for the
generalized gamma distribution,
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For the grouped data, the original data {X} = {xi} (i = 1, 2, ..., n) is replaced by {xk,
fk} (k = 1, 2, ..., h), where xk is the representative values of the class k, fk the observed
frequency in that class, and h is the number of classes. Then, our log-likelihood function
of the grouped data for the generalized gamma distribution (1) tends to
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We have estimated parameters (a, b, c) by numerically maximizing the above log-
likelihood function for the grouped data. For the optimization, the quasi-Newton method
was used.

Although the generalized gamma distribution is suitable for the random variables
taking continuous positive values, we also applied it to the random variable which takes
discrete positive values. Thus, we have done the above estimation procedure for the
distributions of variables a, s, N, aN, and sN.

Tables 4a–c show the estimated parameters fitted to the area a, the perimeter s and the
number of edges N, respectively, of 2-D Poisson Voronoi cells. In each table, the estimates
by HINDE and MILES (1980) are also included for the comparison.

The line curves in Figs. 4 and 5 respectively are the estimated density for a and s. The
line curve in Fig. 6 is the estimated relative frequency of N.

Tables 5a and 5b show the estimates of parameter values, respectively, of the area aN
and of the perimeter sN of two-dimensional Poisson Voronoi cells conditioned on the
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Table 4(a).  Estimated parameters of the three-parameter generalized gamma distribution fitted to the area a of
2-D Poisson Voronoi cells. The values in the last row are the result by HINDE and MILES (1980) who fitted
the same distribution. The last column ‘χ2(d.f.)’ indicates the χ2 values between the observed frequencies
of our computer simulation and the expected frequencies derived from the estimated parameter values of
generalized gamma distribution. ‘d.f.’ is the degree of freedom of χ2 distribution.

Table 4(b).  Estimated parameters of the three-parameter generalized gamma distribution fitted to the perimeter
s of 2-D Poisson Voronoi cells. The values in the last row are the result by HINDE and MILES (1980) who
fitted the same distribution. For the meaning of the last column ‘χ2(d.f.)’, see the legend in Table 4a.

Table 4(c).  Estimated parameters of the three-parameter generalized gamma distribution fitted to the number
of edges N of 2-D Poisson Voronoi cells. The values in the last row are the result by HINDE and MILES (1980)
who fitted the same distribution.

â b̂ ĉ χ2 (378)

Present 1.07950 3.03226 3.31122 638.6
HINDE and MILES (1980) 1.0787 3.0328 3.3095 646.5

â b̂ ĉ χ2 (181)

Present 2.33609 2.97006 7.58060 917.9
HINDE and MILES (1980) 2.3389 2.9563 7.5579 937.3

â b̂ ĉ

Present 0.96853 3.80078 20.86016
HINDE and MILES (1980) 1.0186 3.130 19.784

number of edges N. The line curves in Figs. 7a and 7b indicate the estimated density of aN
for respective values of N = 3, ..., 10. These results, together with those for a, s and N,
suggest that the three-parameter generalized gamma distribution (1) is capable to fit a wide
range of propability density of geometrical quantities as presented here.

4.2.  Poisson Voronoi cells in three dimensions
In three dimensions, we have set ρ = 500 as was indicated and have done a simulation

of three-dimensional Poisson Voronoi cells with five million independent samples, namely,
n = 5,000,000. This value of n was selected in order to get more information about the
statistical properties of Poisson Voronoi cells than the results of KUMAR et al. (1992) where
n = 358,000 was used.

Our results are classified into three categories as in the 2-D case:
1. Histograms of the reduced volume v, the reduced surface area s, the number of

faces F of Poisson Voronoi cells. Here, the reduced volume v is defined by v = ρV, V being
the volume of a Voronoi cell computed for the Poisson point process with intensity ρ. Then,
we can expect E[v] = 1. The reduced surface area s is defined by the relation s = ρ2/3S, where
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S is the surface area of a Voronoi cell for the Poisson point process with intensity ρ. In this
case, we can expect also E[s] ~ 5.821, since it is known that, for a homogeneous Poisson
point process, E[S] = (256π/3)1/3Γ(5/3)ρ–2/3 holds (MEIJERING, 1953).

Also histograms of the volume vF and the surface area sF of Poisson Voronoi cells for
a given number of faces are given.

2. Moments of v, s, F, and vF.
3. Parameters a, b, c of generalized Gamma distribution

f x a b c
ab

c a
x bx a b c

c a
c a, ,

/
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/
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−( ) >( )−
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fitted to the histograms of v, s, F, vF and sF.

Histograms
Dotted points in Figs. 8 and 9 show the observed histograms of, respectively, the

volume v and the surface area s of three-dimensional Poisson Voronoi cells. The class

Table 5(a).  Estimated parameters of the area aN of N-sided 2-D Poisson Voronoi cell. â , b̂ , ĉ  are the estimates
of parameters in the generalized gamma distribution (1).

Table 5(b).  Estimated parameters of the perimeter sN of N-sided 2-D Poisson Voronoi cell to the three-parameter
generalized gamma density (1).

N nN â b̂ ĉ

3 112459 0.91104 8.64192 2.94215
4 1068516 0.88311 7.55504 3.93014
5 2594112 0.88753 7.01095 4.90362
6 2947884 0.89449 6.67685 5.90079
7 1988422 0.90242 6.40916 6.88220
8 900262 0.91634 6.09238 7.82694
9 296342 0.90563 6.17656 8.93527

10 74261 0.90592 6.11545 9.96771
11 14925 0.99382 4.76883 10.20898

N nN â b̂ ĉ

3 112459 1.96044 5.90003 5.99042
4 1068516 1.93086 5.98970 8.05632
5 2594112 1.92828 5.96544 10.05676
6 2947884 1.92219 5.98215 12.10193
7 1988422 1.92241 5.97101 14.11393
8 900262 1.93152 5.89743 16.08546
9 296342 1.91499 5.99192 18.18228

10 74261 1.89139 6.18189 20.43442
11 14925 2.13233 4.51298 20.28079
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Fig. 8.  Observed histogram (dots) of the volume of 3D Poisson Voronoi cells for five million samples and its
estimated density (line).

Fig. 9.  Observed histogram (dots) of the surface area of 3-D Poisson Voronoi cells for five million samples and
its estimated density (line).
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intervals of v and s were respectively chosen to be 0.01 and 0.04, which gave 500 and 400
classes for v and s, respectively. It is because the observed minimum and maximum values
of v and s were, respectively, vmin = 0.015622 and vmax = 4.623616, and smin = 0.558396 and
smax = 14.812654.

Dotted points in Fig. 10 show the histogram of observed number of faces F of three-
dimensional Poisson Voronoi cells. Table 6 gives the histogram of the number of faces F
of 3-D Poisson Voronoi cells for our simulation of five million samples together with the
relative frequencies p̂F  obtained by KUMAR et al. (1992) which is based on 358,000
samples of 3-D Poisson Voronoi cells. In Table 6, the second column is nF, the observed
frequency, and the third column is the relative frequency p̂F  for respective number of faces
F. Let us remind that in the previous subsection, we have done a comparison between the
observed relative frequency of pN for N = 3 and its theoretical estimate. In this three-
dimensional case, however, the frequency for the possible minimum number of faces,
namely, F = 4, is quite small. This point is a remarkable difference between two and three
dimensional cases. Thus, it will be much more difficult to ascertain our result of computer
simulation from the theoretical result of pF for F = 4, even if pF is obtained theoretically.
In order to do the above comparison, more and more samples of 3-D Poisson Voronoi cells
would be required.

Open circles in Figs. 11a, 11b and 11c show the observed histograms of the volume
of 3-D Poisson Voronoi cells for respective number of faces F.

Estimated moments
The first four moments of variables F, v and s are respectively summarized in Tables

Fig. 10.  Observed and estimated histogram of the number of faces of 3-D Poisson Voronoi cells.
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7a–c. Similar notations of symbols for moments are used as in Tables 2a–c. As regards the
mean value of F, it is known that

  
E F[ ] = + =48

35
2 15 535457

2π
. K

by MEIJERING (1953). Concerning the second moment µ2′ of reduced volume v, GILBERT

(1962) has given the value µ2′ = 1.180 by numerical integration. We can observe its good
agreement with our value µ2′ = 1.17830 in Table 7b.

Tables 8a–c are the estimated moment values of the volume vF of three dimensional
Poisson Voronoi cells conditioned on the number of faces F.

Table 6.  Distribution of the number of faces F of 3-D Poisson Voronoi cell.

F nF p̂F p̂F  (KUMAR et al., 1992)

4 5 0.000001 0.00001
5 201 0.000040 0.00003
6 1727 0.000345 0.00033
7 8630 0.001726 0.00159
8 29584 0.005917 0.00581
9 74893 0.014979 0.01494

10 154028 0.030806 0.03089
11 262323 0.052465 0.05212
12 386388 0.077278 0.07695
13 497897 0.099579 0.10041
14 575303 0.115061 0.11465
15 600757 0.120151 0.11927
16 574918 0.114984 0.11485
17 504944 0.100989 0.10144
18 413511 0.082702 0.08244
19 315057 0.063011 0.06325
20 225014 0.045003 0.04523
21 150740 0.030148 0.03062
22 95848 0.019170 0.01935
23 58143 0.011629 0.01164
24 33486 0.006697 0.00672
25 18079 0.003616 0.00382
26 9528 0.001906 0.00186
27 4789 0.000958 0.00975
28 2354 0.000471 0.00500
29 1031 0.000206 0.00198
30 460 0.000092 0.00061
31 228 0.000046 0.00039
32 82 0.000016 0.00014
33 29 0.000006 0.00003
34 15 0.000003 0.00006
35 3 0.000001 0.00000
36 3 0.000001 0.00000
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Fig. 11.  (a) Observed histogram (open circle) and estimated density (line) of the volume of 3D Poisson Voronoi
cells for the number of faces 8, 9, 10, and 11. (b) Observed histogram (open circle) and estimated density
(line) of the volume of 3D Poisson Voronoi cells for the number of faces 12, 13, 14, and 15. (c) Observed
histogram (open circle) and estimated density (line) of the volume of 3D Poisson Voronoi cells for the
number of faces 16, 17, 18, and 19.
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Fitting the generalized gamma distribution to the histograms
We fitted the observed histograms of v, s, F, vF and sF to the three-parameter gamma

distribution of Eq. (1) as in the case of two-dimensions.
Tables 9a–c give the estimates of parameters of generalized gamma distribution fitted

Fig. 11.  (continued).



Statistical Distributions of Poisson Voronoi Cells in Two and Three Dimensions 241

Fig. 11.  (continued).

to the volume v, the surface area s and the number of faces F, respectively, of 3-D Poisson
Voronoi cells. In each table, the estimates by KUMAR et al. (1992) are also included. Notice
that KUMAR et al. (1992) have adopted the two-parameter generalized gamma fit (they used
b and c as variable parameters by fixing a = 1 in our Eq. (1)). Then, we independently fitted
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Table 7(a).  Estimated moments of the number of faces F of 3-D Poisson Voronoi cells in comparison with the
result of KUMAR et al. (1992).

Table 7(b).  Estimated moments of the reduced volume v of 3-D Poisson Voronoi cells in comparison with the
result of KUMAR et al. (1992).

Table 7(c).  Estimated moments of the reduced surface area s of 3-D Poisson Voronoi cells in comparison with
the result of KUMAR et al. (1992).

Present KUMAR et al. (1992)

µ1′ 15.53215 15.5431

µ2′ 252.35345 252.710

µ3′ 4276.84510 —

µ4′ 75421.60050 —

σ 3.33252 3.3350
n–1/2σ 0.001490 0.00557
β1 0.33133 0.3476
β2 0.11292 0.0998

Present KUMAR et al. (1992)

µ1′ 0.99974 1.0011

µ2′ 1.17830 1.1784

µ3′ 1.59478 —

µ4′ 2.43247 —

σ 0.42286 0.4198
n–1/2σ 0.000189 0.00070
β1 0.78350 0.7874
β2 0.88551 0.8108

Present KUMAR et al. (1992)

µ1′ 5.82003 5.8267

µ2′ 36.06266 36.092

µ3′ 236.36429 —

µ4′ 1630.18262 —

σ 1.47985 1.4635
n–1/2σ 0.000662 0.00245
β1 0.30470 0.3098
β2 0.07669 0.0464
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Table 8(a).  Estimated moments of the volume vF of 3-D Poisson Voronoi cells for given number of faces F.

Table 8(b).  Estimated moments of the volume vF of 3-D Poisson Voronoi cells for given number of faces F.

Table 8(c).  Estimated moments of the volume vF of 3-D Poisson Voronoi cells for given number of faces F.

F 7 8 9 10 11 12

nF 8630 29584 74893 154028 262323 386388
µ1′ 0.27917 0.35291 0.42727 0.50640 0.58808 0.67239

µ2′ 0.09291 0.14538 0.20951 0.29015 0.38692 0.50099

µ3′ 0.03611 0.06872 0.11628 0.18594 0.28203 0.41033

µ4′ 0.01612 0.03673 0.07224 0.13200 0.22586 0.36700

σ 0.12237 0.14435 0.16417 0.18360 0.20270 0.22109
n–1/2σ 0.00132 0.00084 0.00060 0.00047 0.00040 0.00036
β1 0.99040 0.89869 0.84351 0.78538 0.74020 0.71618
β2 1.52407 1.21533 1.14520 0.97805 0.85368 0.84783

F 13 14 15 16 17 18

nF 497897 575303 600757 574918 504944 413511
µ1′ 0.76015 0.84902 0.94099 1.03393 1.12915 1.22516

µ2′ 0.63512 0.78642 0.96082 1.15347 1.36918 1.60528

µ3′ 0.57913 0.78972 1.05890 1.38178 1.77543 2.24113

µ4′ 0.57288 0.85501 1.25369 1.76977 2.45283 3.32298

σ 0.23935 0.25609 0.27453 0.29061 0.30693 0.32288
n–1/2σ 0.00034 0.00034 0.00035 0.00038 0.00043 0.00050
β1 0.67476 0.63464 0.62531 0.59171 0.57682 0.56319
β2 0.73178 0.61467 0.61883 0.53219 0.52530 0.50585

F 19 20 21 22 23 24

nF 315057 225014 150740 95848 58143 33486
µ1′ 1.32295 1.42171 1.52376 1.62332 1.72525 1.83095

µ2′ 1.86479 2.14608 2.45844 2.78229 3.13440 3.52259

µ3′ 2.79142 3.42914 4.18834 5.02134 5.98381 7.10588

µ4′ 4.42431 5.78399 7.51614 9.51905 11.98045 15.00021

σ 0.33852 0.35331 0.36959 0.38357 0.39737 0.41256
n–1/2σ 0.00060 0.00074 0.00095 0.00124 0.00165 0.00225
β1 0.54612 0.52386 0.51472 0.48072 0.49959 0.46877
β2 0.47523 0.41974 0.42210 0.35333 0.39527 0.35243
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our simulation data to the two-parameter generalized gamma distribution in order to
compare them with the results of KUMAR et al. (1992).

Estimated density of the volume v and of the surface area s, respectively, are indicated
as line curves in Figs. 8 and 9. Estimated relative frequency of the number of faces F is
shown in Fig. 10. These three curves are obtained from the three-parameter generalized
gamma fit in Tables 9a–c. The results indicate each a nice fit to the observation. On the
contrary, the two-parameter generalized gamma fits as given in Tables 9a–c, including the
results of KUMAR et al. (1992), all showed a slight systematic deviation from our observed
histograms.

Tables 10a and 10b show the estimates of three-parameter generalized gamma fit,
respectively, of the volume vF and of the surface area sF of three-dimensional Poisson
Voronoi cells conditioned on the number of faces F. The line curves in Figs. 11a, 11b and
11c indicate the estimated density of vF for respective values of F = 8, ..., 19. These results
again suggest the capability of three-parameter generalized gamma fit to a wide range of
probability density in our problem.

Table 9(a).  Estimated parameters of the three-parameter generalized gamma distribution fitted to the volume
v of 3-D Poisson Voronoi cells. Estimates of two-parameter generalized gamma fit (a = 1: fixed) by the
present author and by KUMAR et al. (1992) are also given for the comparison.

Table 9(b).  Estimated parameters of the three-parameter generalized gamma distribution fitted to the surface
area s of 3-D Poisson Voronoi cells. Estimates of two-parameter generalized gamma fit (a = 1: fixed) by the
present author and by KUMAR et al. (1992) are also given for the comparison.

Table 9(c).  Estimated parameters of the three-parameter generalized gamma distribution fitted to the number
of faces F of 3-D Poisson Voronoi cells. Estimates of two-parameter generalized gamma fit (a = 1: fixed)
by the present author and by KUMAR et al. (1992) are also given for the comparison.

â b̂ ĉ

Present 1.16788 4.04039 4.79803
2-param. 1.0 (fixed) 5.48854 5.48714
Kumar 1.0 (fixed) 5.6117 5.6333

â b̂ ĉ

Present 1.86256 0.16289 8.48552
2-param. 1.0 (fixed) 2.56162 14.90867
Kumar 1.0 (fixed) 2.6469 15.4847

â b̂ ĉ

Present 1.44965 0.19187 15.05113
2-param. 1.0 (fixed) 1.37964 21.42884
Kumar 1.0 (fixed) 1.3891 21.6292
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Table 10(b).  Estimated parameters of the surface area sF of F-faced 3-D Poisson Voronoi cell to the three-
parameter generalized gamma density (1).

Table 10(a).  Estimated parameters of the volume vF of F-faced 3-D Poisson Voronoi cell to the three-parameter
generalized gamma density (1).

N nN â b̂ ĉ

7 8630 0.82346 22.36141 6.35271
8 29584 0.80934 21.53615 7.40886
9 74893 0.80362 21.04668 8.44347

10 154028 0.85523 18.79045 8.90942
11 262323 0.85227 18.37213 9.88683
12 386388 0.85073 18.06106 10.88840
13 497897 0.87702 16.78236 11.51136
14 575303 0.89256 16.04023 12.31797
15 600757 0.86763 16.54518 13.55164
16 574918 0.89110 15.53634 14.20837
17 504944 0.88706 15.50650 15.26408
18 413511 0.87185 15.93744 16.52283
19 315057 0.87061 15.85851 17.55166
20 225014 0.88398 15.23324 18.32121
21 150740 0.88192 15.12351 19.27887
22 95848 0.96293 12.12578 18.59853
23 58143 0.83063 17.44704 22.71260

N nN â b̂ ĉ

7 8630 1.28948 2.08032 10.57979
8 29584 1.29581 1.99734 12.14340
9 74893 1.28241 2.05230 13.91442

10 154028 1.34905 1.67015 14.78239
11 262323 1.34420 1.67129 16.37906
12 386388 1.33630 1.69382 18.03030
13 497897 1.35515 1.57736 19.26449
14 575303 1.38620 1.42721 20.46514
15 600757 1.34297 1.60958 22.50512
16 574918 1.38092 1.42127 23.48764
17 504944 1.36730 1.47730 25.26716
18 413511 1.35422 1.53589 27.05244
19 315057 1.32554 1.68809 29.21512
20 225014 1.36272 1.48282 30.02826
21 150740 1.37970 1.38506 31.05803
22 95848 1.47641 0.98816 30.47677
23 58143 1.23021 2.38273 38.41532
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5.  Discussion

In the present paper, we have done computer simulations of Poisson Voronoi cells in
two and three dimensional spaces. The numbers of independent samples generated were n
= 10,000,000 and n = 5,000,000 for two-dimensions and for three-dimensions, respectively.
These sample sizes are the biggest among the computer simulations so far reported.

Computer simulations of Poisson Voronoi cells of such a big size of random samples
are now becoming possible to perform because of the recent increase of computer power.
This circumstance is becoming obvious not only in the high-end computer environments,
but also in the level of personal computers with lower cost.

One of the points which became clear from the results of the present computer
simulation is the good coincidence between the observed relative frequency of triangles for
the two-dimensional Poisson Voronoi cells and its theoretical estimate given by HAYEN

and QUINE (2000a, b). This coincidence shows not only the validity of our simulation
procedure, but also the necessity of large number of independent samples in the Monte
Carlo simulation of Poisson Voronoi cells. Such a coincidence would not be obtained if the
number of samples is less. This point shows, at the same time, the difficulty of performing
theoretically the derivation of the distribution of the number of edges of Poisson Voronoi
cells, even in two-dimensions.

Second point to be discussed is on our results of the estimated values of parameter of
three-parameter generalized gamma fit to the area a in two-dimensions and to the volume
v in three-dimensions. We refer their values here again together the corresponding values
in one-dimension as follows:

Dimension â b̂ ĉ

1 1.0 (exact) 2.0 (exact) 2.0 (exact)
2 1.07950 3.03226 3.31122
3 1.16788 4.04039 4.79803

Here, the size (namely, the length) x of one-dimensional Poisson Voronoi cell is
known to obey the following density:

f(x) = 4x exp(–2x),

which indicates that the parameters of Eq. (1) give the values of a = 1, b = 2 and c = 2 in
this case.

From the above table, we immediately note that there might exist some relationship
among parameters on the dimensionality of space. In relation to this point, we recall
“Kiang’s conjecture”(KIANG, 1966). He conjectured based on his Monte Carlo simulation
of 2-D and 3-D random Voronoi tessellations, that the probability distribution of the
volume x of the Voronoi cell is of the form:
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f x x x d( ) =
( ) ( ) −( ) =−α
α

α α αα

Γ
1 2exp ;    

where d is the dimension of space. Later, the Kiang’s conjecture was denied by TANEMURA

(1988) through his computer simulation of 3-D Poisson Voronoi tessellation. In TANEMURA

(1988), n = 100,000 Voronoi cells are randomly sampled from fifty independent realizations
of 4000 point Poisson point processes. Then, the empirical distribution of the volume of
Voronoi cells was fitted to the three-parameter generalized gamma distribution (1) using
a non-linear least-squares method. The estimated values of parameters were â  = 1.409, b̂
= 2.813 and ĉ  = 4.120, which showed a discrepancy from the Kiang’s conjecture, namely,
a = 1, b = 4 and c = 4. It will be clear that the above estimated values of present investigation
again reject Kiang’s conjecture. However, we note there might be a certain tendency
between the parameter values and the dimension of space as was stated. Thus, it will be
interesting to investigate the Poisson Voronoi cells in higher dimensions.
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