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Abstract.  At the beginning of the series of papers we present systematic approach to
exhaust the convex pentagonal tiles of edge-to-edge (EE) tilings. Our procedure is to solve
the problem systematically step by step by restricting the candidates to some class. The
first task is to classify both of convex pentagons and pentagonal tiling patterns. The
classification of the latter is based on the analysis of vertex patterns of pentagonal tiling.
As the first step of the procedure, the candidates are restricted to the pentagons with four
edges of the equal length. Furthermore, the analysis is restricted to the simplest category
of node conditions. As a result, we obtained the result that in the above restricted tilings,
14 patterns are possible by the combinatorial analysis, the topological judgment and the
geometric judgment.

1.  Introduction

Packing, covering, and tiling are the central topics of the geometry of arrangement and
have important applications in the consideration of ideal geometric models in a wide range
of scientific fields. Tiling refers to coverage of the plane with polygons (tiles) without gaps
or overlapping, and a single congruent polygon that tiles a plane is called a prototile
(GRÜNBAUM and SHEPHARD, 1987), or a polygonal tile. The tiled arrangement of polygons
on a plane is referred to as a tiling pattern in this study. Plane tiling with convex polygons
has primarily been studied in an attempt to exhaust all the possible shapes that can tile a
plane by a single congruent element. The current state of knowledge in this field can be
summarized as follows.
(I) Any single triangle and quadrilateral, including concave quadrilaterals, are tileable
(i.e., all prototiles), since the sums of the internal angles of triangles and quadrilaterals
divide evenly into 360° and all vertices can be concentrated to one point when the
corresponding edges are fitted together.
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Fig. 1.  Convex pentagonal tiles of type 1–10.
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(II) Tiling is not necessarily possible with other convex polygons because of constraints
on angles and edge lengths. For example, no tiling exists for a polygon if no combination
of its interior angles sum to 360°.

(i) In the case of convex hexagons, prototiles can be categorized into three types
(REINHARDT, 1918; BOLLOBÁS, 1963; GARDNER, 1975; GRÜNBAUM and SHEPHARD,
1987).

(ii) For convex polygons with seven or more edges, no prototiles exist (REINHARDT,
1918; GRÜNBAUM and SHEPHARD, 1987).

(iii) For the convex pentagonal tiles, there are at present 14 classifications (see Figs.
1 and 2), but it remains unproven whether this is the perfect list of such pentagons
(REINHARDT, 1918; KERSHNER, 1968; GARDNER, 1975; SCHATTSCHNEIDER, 1978, 1981;
HIRSCHHORN and HUNT, 1985; GRÜNBAUM and SHEPHARD, 1987; WELLS, 1991; SUGIMOTO,
1999; SUGIMOTO and OGAWA, 2000a). Note that, as shown in Figs. 1 and 2, each of convex
pentagonal tiles is defined by some conditions between lengths of edges and magnitudes
of angles; but some degrees of freedom remain. (However, only the pentagonal tile of type
14 does not have any degrees of freedom except size. For example, the exact value of C in
pentagon of type 14 is cos–1((3 57  – 17)/16), and the values of angles B, D, and E can be
obtained by C.) Then, unless a convex pentagonal tile is a new prototile, any convex
pentagonal tile belongs to one or more of 14 types. The pentagonal case is the only unsolved
problem in the study of tiling the plane with congruent convex polygons, and the problem
has yet to be approached scientifically (SUGIMOTO and OGAWA, 2003a).

The solution to this sole remaining problem of tiling the plane with convex pentagons
requires a systematic approach, that is, the problem should be divided into stages and study

Fig. 2.  Convex pentagonal tiles of type 11–14.
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in each stage should be repeated from various perspectives. It is believed that this approach
will eventually lead to the final result.

The discussion in the present paper is limited to the problem of convex pentagonal
tiles. The problem of deriving a perfect list of all prototiles is separate from the problem
of identifying tiling patterns, although the two are closely related (SUGIMOTO and OGAWA,
2003a). However, without classifying tiling patterns, it will be impossible to express the
necessary and sufficient conditions for identifying prototiles. Dividing the problem based
on clear criteria is an effective systematic approach to solving the problem. Thus, convex
pentagons and tiling patterns are classified here into finite sets and each set is investigated
for each classification to obtain the solution. Through such systematic examination, it is
expected that the complete list of convex pentagon tiles will eventually be obtained.

The tilings themselves can be distinguished into two kinds: edge-to-edge (EE) tilings,
and non-edge-to-edge (NEE) tilings (SUGIMOTO, 1999). In EE tilings, each edge of a
polygon coincides with an equal-length edge of an adjoining polygon, that is, vertices may
only contact other vertices (Fig. 3(a)). In NEE tilings, the vertices of polygons may contact
the edges of adjoining polygons, that is, there is no restriction on how adjoining polygons
meet (Fig. 3(b)). Eight of the 14 convex pentagon tiles have potential EE tilings. Thus,
while the EE tilings are topologically pentagonal, NEE tilings are not; NEE tiling can be
regarded as the case in which the convex conditions of hexagonal tiling are eased
(SUGIMOTO and OGAWA, 2000b, 2003a; OGAWA et al., 2002).

The first problem to be solved by this systematic approach is the tiling of convex
pentagons under an EE tiling restriction. Therefore, as long as cautions are unnecessary,
EE tiling is written simply a tiling throughout the paper. In this study, pentagons are
organized based on the edge length, and tilings are classified by the characteristic of vertex
concentration.

As a first step in classifying pentagonal tilings, this report aims to present the perfect
list of pentagon tiles with four equal-length edges under the simplest case of vertex
concentration. Both convex and concave pentagons are included in this analysis. The
method introduced here is expected to be applicable to a wide range of problems involving
creation of a perfect list of prototiles.

2.  Unique Characteristics of the Pentagon

The vertices and edges of pentagons will be referred to using the nomenclature shown
in each pentagon of Figs. 1 and 2.

a b

Fig. 3.  Examples of (a) edge-to-edge tiling and (b) non-edge-to-edge tiling.
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2.1.  Nodes
The geometric definitions and tilings for the cases that have already been solved for

triangles, quadrilaterals and hexagons are first explained briefly. When joining the edges
AB of two identical polygons (e.g., for triangles ABC), the case where all vertices A of
adjacent polygons are joined (and similarly for vertices B) is called an AB-regular pattern
(i.e., mirror symmetry) (Fig. 4), and the case where vertices A and B are joined is called an
AB-reversed pattern (point symmetry) (Fig. 5). Here, the concentration of three or more
polygon vertices at a point in an EE tiling is called a vertex concentration point, or node,
with a valence κ equal to the number of vertices comprising the node. For example, EE
tilings of triangles are comprised of 6-valent nodes, as the sum of internal angles for any
triangle is 180° (triangles have EE tilings when using the reversed pattern even if the three
edges are of different lengths). In the case of quadrangles, even if concave, EE tilings have
4-valent nodes (using a repeated reversal configuration). Convex hexagonal tilings are
always comprised of 3-valent nodes, even if the requirement for congruent hexagons is
relaxed. The number of prototiles with 3-valent tilings is thus quite limited. For EE tilings
with seven or more polygons, the mean valence of nodes in the tiling will be smaller than
3. Therefore, since the lowest possible valence of nodes in an EE tiling is 3, EE tilings with
seven or more polygons are impossible.

Fig. 4.  Example of a regular triangular tiling pattern.

Fig. 5.  Example of a reversed triangular tiling pattern
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In pentagonal EE tilings, the nodes have multiple valences. It will be shown that the
mean valence (κ ) is 10/3. The sum of internal angles of any N pentagons is 3πN, and thus
the sum of internal angles of vertices meeting at these nodes is 2πV, where V is the number
of nodes. For a tiling pattern of congruent convex pentagons, the number of nodes along
the periphery becomes much smaller than V as the pattern increases in size (large N and V).
Therefore, for sufficiently large patterns, the number of nodes on the periphery can be
neglected, yielding the relation V = 3N/2. The number S of lines connecting nodes is 5N/
2, which is equal to half the sum κ V of valences for the pattern. That is, S = 5N/2 = κ V/
2. Therefore, κ  = 5N/V = 5N/(3N/2) = 10/3 holds (SUGIMOTO and OGAWA, 2003a). Another
approach is to imagine the entire tiling plane as the surface of a large polyhedron; the factor
of 2 may then be neglected in Euler’s relation of V – S + N = 2 at the infinite limit (V → ∞,
S → ∞, N → ∞).

If the nodes are limited to valences of 3 and 4 in pentagonal tiling, with the total
number of nodes of valence κ written Vκ, we obtain the relations 3V3 + 4V4 = 2S and V3 +
V4 = V, yielding V3 = N and V4 = N/2 (SUGIMOTO 1999; SUGIMOTO and OGAWA, 2000a,
2003a). The simplest case would be two kinds of 3-valent nodes (including the case when
the two kinds are identical), and one kind of 4-valent node. Figure 6 shows an example of
this type of tiling, where the two kinds of 3-valent nodes are defined by 2B + A = 2E + A
= 360°, and the one kind of 4-valent node is defined by 2C + 2D = 360°. Thus, the three kinds
of nodes in this pattern are comprised of a total of (2 × 3) + (1 × 4) = 10 vertices of pentagons,
that is, in the equations for the three kinds of nodes (2B + A, 2E + A, 2C + 2D), each of the
five vertices (A, B, C, D, E) appear twice. Hence, κ  = 10/3 holds. In this case, all vertices
of a pentagon have a statistically equal chance of appearing at a certain node. This tiling
condition for convex pentagons, with two kinds of 3-valent nodes (including the case when
the two kinds are identical) and one kind of 4-valent node, represents the simplest node
condition (SUGIMOTO and OGAWA, 2003a).

Fig. 6.  Pentagonal tiling with two 3-valent nodes (2B + A = 2E + A = 360°) and one 4-valent node (2C + 2D =
360°).
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2.2.  Classification of convex pentagons with equal edges
Pentagons can be categorized by the number of equal-length edges and their positions,

from figures with five unequal edges to those with five equal edges. Here, the edge lengths
are designated symbolically in anticlockwise order, with identical symbols for edges of
identical lengths, and descriptions of congruent shapes with different starting points or
mirror-reflections are excluded. Beginning with equilateral pentagons, followed by those
with four equal-length edges, etc., there are a total of 12 unique classifications: [11111],
[11112], [11122], [11212], [11123], [11213], [11223], [11232], [12123], [11234], [12134],
and [12345] (SUGIMOTO 1999; SUGIMOTO and OGAWA, 2003a). This study addresses in
general terms the possible tilings for pentagons with four equal-length edges, [11112],
under the simplest node condition (i.e., not the complete set of possible tilings for such
pentagons).

2.3.  Classification of EE tiling patterns
EE tiling patterns are classified here based on the valences of nodes. As a simple first

case, the tilings are limited to those that satisfy the simplest node condition defined above
(nodes with valence of 5 or more will be handled separately). This case consists of 240
possibilities, using every possible combination of symbols (SUGIMOTO and OGAWA,
2003a). The combinations are listed in Table 1, where the combinations are grouped
without duplication and the numerals 1–5 denote the interior angles A–E of the pentagons
(see Fig. 1 or 2). That is, combinations of 4-valent nodes are classified as a single set,
without regard to the ordering or configurations of the vertices. For example, the two nodes
AADC (1123) and ADAC (1213) in Fig. 7 are both classified as 1123. The maximum
possible numbers of node combinations are listed in Table 1. In the case of four different

Table 1.  Combinations of vertices at nodes in pentagonal tilings.

†1Classification is given by xy, where x is the degeneracy (the number of vertices of the same kind
appearing in one node) of the 4-valent node, and y is the degeneracy of the 3-valent nodes (20 represents the case
of two identical 3-valent nodes).

†2The number of vertex combinations is 10.
†3The number of vertex combinations is 30.
†4The number of vertex combinations is 5.
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interior angles concentrated at a node (i.e., 01 and 00 in the table), the fifth angle becomes
180°. For example, if the combination of the 4-valent node is A + B + C + D = 360°, the
polygon is not a pentagon since E = 540° – (A + B + C + D) = 180°. Therefore, classifications
01 and 00 can be excluded entirely, while excludable cases in the other classifications need
to be identified individually.

2.4.  Degrees of freedom
The degrees of freedom (DOFs) of a polygon with n edges (≥3, integer) is generally

given by 2n – 3. For an n-edge polygon, there are 2n planar coordinate systems, attached
to n vertices (each vertex is connected to an edge). However, if the location of any point
(e.g., the centroid) in an n-edge polygon is known, the number of DOFs is reduced by 2,
and a further 1 DOF is lost because the sum of interior angles is given ((n – 2) × 180°). For
example, a triangle may be uniquely defined by knowledge of three edge lengths, two edge
lengths and the included angle, or two angles and the included edge length, corresponding
to 2n – 3 = 3 DOFs. Similarly, the addition of a vertex in place of an edge in an n-edge
polygon results in a polygon with an additional 2 DOFs.

Figures such as a five-pointed star, the projected edges of which intersect, are also
included in this generalization. Even if figures with intersecting edges are excluded, or
further, if convexity is required, this condition merely imposes additional constraints on
the shape of the polygon and does not reduce the available DOFs. Thus, this general theory
states that pentagons have 7 DOFs. However, this definition includes size as a DOF (i.e.,
similarity, not congruency). For congruent polygons, the number of DOFs will therefore
be 2n – 4. Furthermore, the constraint of four equal-length edges, equivalent to 3 DOFs,
reduces the number of DOFs for our case to 3 (=2n – 7) (SUGIMOTO and OGAWA, 2003a).

3.  Limiting Pentagons to Those of Interest: Pentagons with Four Equal-length Edges

Hereafter, the study presented in this report is limited to pentagons with four equal-
length edges. Note that, in this report, the DE edge (=e) of pentagon is the sole edge of
different length. The EE tiling of pentagons with four equal-length edges requires the DE
edges to be joined, in regular or reverse fashion, as shown in Fig. 8. The vertices D (or E)
of adjoining pentagons are coincident in a DE-regular mirror-reflected pattern, while the
vertex D of each pentagon meets the vertex E of the adjoining pentagon in a DE-reversed

Fig. 7.  Examples of pentagonal tilings with 4-valent nodes of 1123 and 1213.
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point-symmetric pattern. That is, in the tiling of pentagons with four equal-length edges,
the pentagonal pair (i.e., in this study, DE-regular and DE-reversed) is always the
foundation of tiling. Therefore, the tiling is bisected by the regular pattern and the reversed
pattern (SUGIMOTO and OGAWA, 2003a).

The characteristics of nodes in a pentagonal tiling were described in some detail
above. The average number of pentagons meeting at nodes in a pentagonal tiling is 10/3,
indicating that it is physically impossible to form a tiling of pentagons with a single valence
of node. At least three kinds of nodes must be used to construct a tiling for pentagons,
except for the case of two identical kinds of 3-valent nodes as described above. Hence, it
is assumed that three or more vertices meet at each node, as the simplest node condition,
requiring two kinds of 3-valent nodes (including the case when the two kinds are identical)
and one kind of 4-valent node. Counting the combinations using symbols as in Table 1
yields 240 cases that satisfy this simplest node condition. For the case of pentagons with
four equal-length edges (i.e., edge DE is special), the number of possible combinations is
reduced. For EE tilings, the DE edge must be used in either a regular or reversed manner
(see Fig. 8). Then, considering symbolic symmetry in the simultaneous D ↔ E and A ↔
C reflections within the range allowed by the symbols, the cases of possible tiling are
reduced to a total of 33 (see Table 2), consisting of 23 regular patterns and 10 reversed

Fig. 8.  (a) DE-regular and (b) DE-reversed patterns for pentagons with four equal-length edges.

Table 2.  Combinations of vertices at nodes for tilings of convex pentagons with four equal-lengths edges.

‡Arrow indicates the reduction in the number of combinations when symmetry for the simultaneous
exchange of D ↔ E and A ↔ C is considered.



10 T. SUGIMOTO and T. OGAWA

patterns (SUGIMOTO and OGAWA, 2003a). These patterns are listed in Tables 3 and 4.
For the patterns having a congruent equivalent, the case listed is that for D ≤ E where

it is possible to judge easily. It should be noted that the tiling patterns satisfying the node
restriction (the relations of angles among three nodes which are given from the simplest
node condition) include not only periodic cases, but also non-periodic cases. The 33 cases
listed in these two tables consider both the tiling pattern (with respect to node combinations)
and the shape of the pentagons.

4.  Investigation 1: Topological Judgment

In this section and next sections, each of the 33 cases shown in Tables 3 and 4 are
evaluated by (i) topological judgment (graph theory) to investigate the possibility of tiling
using symbolized notation without breaking down the order of pentagonal meshes, and (ii)
geometric judgment to investigate the possibility of the existence of the convex pentagon
in Euclidean space. This geometric judgment considers the range of possible pentagons that

Table 3.  Potential tilings for DE-regular patterns of convex pentagons with four equal-length edges.

*Congruent with simultaneous D ↔ E and A ↔ C reflections.
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satisfy the node restrictions based on quantitative relationships between edge length and
angles (see Sec. 5). Then, for each pentagon, it is investigated whether a tiling is possible,
and whether the pentagon is convex. Through this procedure, the range of possible prototile
and tiling patterns for each classification can be determined. As a general problem of logic,
the creation of a perfect list involves both confirmation and exclusion to satisfy a necessary
and sufficient condition.

Any collection of points joined by lines is called a graph. The lengths of the lines and
the angles between the lines are not relevant to this topological investigation. From the
viewpoint of graph theory, tiling patterns are considered to be graphs that can fill the plane
(WILSON, 1996). Pentagonal tiling patterns are planar graphs in which all the spaces
between lines are pentagons. Here, in each pentagonal mesh, the vertices are labeled in the
same order. Specific examples will make this easier to understand.

Table 3, DE-regular patterns, Case 3 describes the case of a DDAA 4-valent node and
BBC and EEC 3-valent nodes. Figure 9 shows an array with two pentagons on the left and

Table 4.  Potential tilings for DE-reversed patterns of convex pentagons with four equal-length edges.

*Congruent with simultaneous D ↔ E and A ↔ C reflections.

Fig. 9.  DE-regular 3: DDAA, BBC, EEC.
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one on the right. Only one node, an EEC node, is shown for simplicity (i.e., Fig. 9 is a
simplified graph that does not aim to reproduce pentagonal forms correctly). Since the
combination of two vertices EE can only be concentrated at a node with vertex C, the
position of C for the pentagon on the right can be decided easily. The neighboring vertices
B and D may be reversed, but in either case, both are concentrated with vertex A and thus
the situation is the same. However, as A can be concentrated only with D, the upper
concentration of B in Fig. 9 does not fit the node restrictions. In this case, it is the conclusion
that there is no tiling pattern that satisfies this node restriction. Following this clearly
negative result, there is no further need to investigate this case. When affirmative results
are confirmed, or a clear negative result cannot be confirmed, the pattern is investigated to
a greater range by continuing this process of combining vertices symbolically as long as
valid 3- or 4-valent nodes are achieved. Once it becomes impossible to assign a vertex, the
case is eliminated as impossible, but it is sometimes necessary to distinguish between
different possible arrays during the process up to that point in order to avoid missing
possible successful arrays. As the number of successful nodes increases, the prospect of
tiling (graph) will arise. Many of these cases are periodic patterns, and as long as some kind
of regularity can be found, the possibility for a tiling remains open. Logically, however,
there are many possibilities for such combinations, and the conclusion of elimination or
confirmation cannot be drawn easily. Nevertheless, for the 33 cases examined here, it
turned out to be rather simple to confirm or eliminate these arrays. An affirmative result
refers to cases in which a unique assignment of vertex labels is identified. The pentagons
forming these arrays therefore have the potential to be prototiles. However, from the
relations among edges and interior angles of tile, some of these potential pentagons will not
be prototiles because some shapes do not allow convex (or concave) pentagons. For
example, a shape with a valid pattern is not pentagon when the length of edge DE is proven
to be zero by geometric analysis. An example of this case is DE-regular 19 (Case 19 in Table
3). This will be shown in the geometric considerations in Sec. 5. It is also important to note
that some cases have multiple tilings. Any case that has at least one uninterrupted set of
combinations has the potential to be tiling.

4.1.  DE-regular pattern
In DE-regular patterns, DD and EE always occur as a pair. Table 5 shows the

classification of Cases 1–23 in Table 3 focusing on pairs with 3- or 4-valent nodes.
In group 2 of Table 5, where only one of the two DD or EE pairs forms part of a 3-valent

node, the process of evaluation is simpler. Cases 3–6, 8, 13, 15, 17 and 23 can be readily
eliminated at this stage.

In group 3 of Table 5, where both the DD and EE pairs form part of 3-valent nodes,
Cases 9 and 18 cannot be eliminated without further investigation, but are in fact eliminated
eventually. Theoretically, if one type is eliminated, no investigation of the other is
necessary. However, for Case 10, which also has 3-valent nodes for both DD and EE, both
nodes meet the conditions, and the third vertex in both cases is B. It is somewhat difficult
to distinguish between the different cases here, but it soon becomes clear upon further
investigation of Case 10 how the tiles assemble uniquely, yielding a periodic pattern.

The remaining problems are Cases 1, 2 and 11 in the DDEE 4-valent node class in
group 1 of Table 5. Investigation of these cases requires creation of a module with an
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infinite, periodically repeating pair, such that tiles are connected in a DE-regular pattern.
All the remaining nodes are 3-valent (i.e., ABC), in which case the “jagged” edges of the
modules consist of convex vertices B and concave vertices A and C. The convex vertex B
fits in one concave vertex in one module, and the concave vertex fits to one convex vertex
B of another module, forming ABC 3-valent nodes. Case 11 showed some regularity, while
Cases 1 and 2 could be eliminated.

The cases in which regularity (or certain periodicity) was found are 7, 10–12, 14, 16,
and 19–22. Of these, problems were found with Cases 19 and 22, as will be explained in
Sec. 5.

4.2.  DE-reversed pattern
DE-reversed patterns always contain DE pairs. Cases 1–10 in Table 4 are classified

into three groups according to how the DE pairs are distributed over the 3- or 4-valent
nodes, as shown in Table 6. In DE-reversed patterns, the point-symmetric pairs of tiles are
the basic element for tiling. There is a minor additional difference between groups 1 and
3 in Table 6, but the task of confirmation and elimination remains the same as for the DE-
regular patterns.

As above, when only one of the two nodes is 3-valent (group 2 of Table 6), the case
is easy to evaluate. In group 2, only Case 8 was eliminated. For group 3, it is necessary to
distinguish between multiple possible patterns, and ultimately only Case 9 was eliminated.
In group 1, a module with an infinite, periodically repeating pair (with tiles connected in
a DE-regular pattern) could be formed, but it was not always necessary to use a simple
parallel transformation as each module could be reversed to obtain the same transformation.
On the basis of this investigation, only Case 1 was eliminated, while Cases 2 and 3 were
indicated as a possible prototile. Therefore, Cases 2–7 and 10 exhibit regularity (certain
periodicity). It is also still possible to mix some reversals with other transformations, but
that technique does not fulfill the simplest node condition and will not be considered here.

Table 5.  Regrouping of cases 1–23 in Table 3 by valence of nodes involving DD and EE.

Table 6.  Regrouping of cases 1–10 in Table 4 by valence of nodes involving DE.
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5.  Investigation 2: Geometric Judgment

Following from the symbolic and graph theory investigations above, the investigation
is extended here to Euclidean geometry. When the geometric conditions are complex, the
investigation can be rendered more tractable by reducing the degrees of freedom (DOFs),
which simplifies the equations describing the geometric relationships. A pentagon has six
DOFs, but a pentagon with four equal-length edges has just three DOFs (see Subsec. 2.4).
Pentagons with four equal-length edges can be divided into three triangles; two isosceles
triangles EAB and BCD, and a third triangle BDE (Fig. 10). The base angles of the two
isosceles triangles EAB and BCD are denoted α and β (0 < α < 90°, 0 < β < 90°), and the
peak angles of vertices D and E of triangle BDE are denoted δ and ε (180° – α – β < δ +
ε < 180°), respectively. The interior angles of the pentagon can then be expressed as follows
(SUGIMOTO and OGAWA, 2003b).
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Four variables have been introduced to represent the angles, but generally, only two
of the three equations such as 2C + 2D = 360°, 2B + A = 360°, are independent under the
node restriction (all nodes subtend 360°). Thus, at this stage, there are actually just two
independent variables. The exceptions are the DE-regular 11 (Case 11 in Table 3) and the
DE-reversed 3 and 4 (Cases 3 and 4 in Table 4), all of which have an additional DOF.

In reference to Fig. 10, the lengths of four equal-length edges are defined as 1 (i.e., a
= b = c = d = 1), and the length of the fifth edge DE (=e) is designated � to facilitate the
analysis below. Additionally, the lengths of the other edges of triangle BDE are BE  = 2cosα
and BD  = 2cosβ. The half heights can thus be expressed by the relation

cos sin cos sin .α ε β δ= ( )2

Since this is a transcendental equation, an investigation of the case is required to identify
possible solutions. Apart from this equation, however, there remains only one (or
exceptionally two) case involving two independent angular variables. Thus, the problem
is not particularly difficult.

If the pentagon is convex, the interior angle µ must be in the range 0 < µ < 180°. Even
if the pentagon is allowed to be concave (180° < µ < 360°), µ may not equal 180°. In any
case, if there exists a solution, the length of the fifth edge DE is defined by

  l = +( ) ( )2 3cos cos cos cosα ε β δ
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where � > 0 is required (SUGIMOTO and OGAWA, 2003b). The essential points here are that
Eq. (1) was derived on the assumption that the initial polygon is a pentagon with interior
angles summing to 540°, and that the division of the pentagon into the three triangles shown
requires a convex pentagon.

This geometrical investigation was performed for the cases exhibiting regularity in the
investigation described in Sec. 4. The cases eliminated from the affirmative cases of
previous investigation are considered below (DE-regular 19 and 22, DE-reversed 10).

• DE-regular 19 (Case 19 in Table 3)
The three vertex concentration types for this case (BBCA, DDC, EEA) can be described

by the relations 2B + C + A = 360°, 2D + C = 360°, and 2E + A = 360°. This leads to the
result that δ + ε = 180°, that is, � = 0. Thus, the shape is a quadrilateral (D merges with E),
not a pentagon.

• DE-regular 22 (Case 22 in Table 3)
The three vertex concentration types for this case (DDBC, EEA, ABC) can be described

by the relations 2D + B + C = 360°, 2E + A = 360°, and A + B + C = 360°. Thus, α + β =
180°, that is, the shape is not a pentagon.

• DE-reversed 10 (Case 10 in Table 4)
The three vertex concentration types for this case (BBCA, CDE, ADE) can be described

by 2B + C + A = 360°, C + D + E = 360°, and A + D + E = 360°. Thus, δ + ε = 180°, that
is, � = 0 and the shape is a quadrilateral.

As the establishment of an index in this study involves eliminating candidates for
tiling, it is not necessary to carry out geometrical investigations for any other cases.
However, to demonstrate some examples of confirmed solutions, two cases for which
solutions were found are provided below (DE-regular 7 and DE-reversed 3).

• DE-regular 7 (Case 7 in Table 3)
The three vertex concentrations for this case (DDCC, BBA, EEA) can be described by

the relations 2D + 2C = 360°, 2B + A = 360°, and 2E + A = 360°. Thus, Eq. (1) becomes

Fig. 10.  Division of a pentagon with four equal-length edges.
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Since the above indicates that δ = D – β = β and ε = E – α = 90°, Eqs. (2) and (3) become
cosα = sinβcosβ = sin(2β)/2 and � = 2cos2β, respectively. Thus, the ranges for these angles
and � are 60° ≤ α < 90°, 0° < β < 90°, and 0 < � < 2, respectively. This has, as expected,
one DOF. An equilateral pentagon with � = 1 is obtained when α = 60° and β = 45°.

• DE-reversed 3 (Case 3 in Table 4)
The three vertex concentrations for this case (DDEE, ABC, ABC) can be described by

2D + 2E = 360°, A + B + C = 360°. In this case, it is not always necessary to rely upon Eq.
(1). Instead, it is more convenient to regard the pentagon as the sum of an isosceles triangle
ABC and a parallelogram ACDE. All the interior angles are required to be convex, but this
condition only specifies the range of angles. Restricting the length of DE to 0 < � < 2
determines the shape of the isosceles triangle ABC. The lengths of the edges of the
parallelogram are all predetermined, but there remains an angular range permitted for the
parallelogram. In other words, this case retains two DOFs. DE-regular 11 is similar to this
case. Furthermore, if the 4-valent node has been determined, the remaining nodes under the
simplest node condition (i.e., two 3-valent nodes) are no longer independent (whether
identical or not). The restrictions on the 4-valent node are generally given by the sum of
the relations describing the two 3-valent nodes. Note that the angular equations for each
pair of 3-valent nodes is not independent if and only if the two 3-valent nodes are identical.

The cases eliminated by the topological judgment investigation in Sec. 4 were also
examined by geometrical investigation. This geometric analysis eliminated DE-regular

Y: confirmed. N: eliminated.

Table 7.  Results of topological judgment and geometrical judgment.
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cases 6, 9, 13, 15, 17, 18 and 23, and DE-reversed case 9.
The results of the graph theory analysis in Sec. 4 and the geometric analysis in this

section are summarized in Table 7.

6.  Conclusions

The analyses above have afforded a list of pentagonal tiles with four equal-length
edges under the simplest node condition. The part in Sec. 3 discussed the tiling patterns and
employed a symbol-based investigation to classify and identify unique patterns, producing
the list of 23 DE-regular patterns in Table 3 and 10 DE-reversed patterns in Table 4
(SUGIMOTO and OGAWA, 2003a). In next parts, these 33 cases were investigated by
topological judgment (Sec. 4) and by geometric judgment (Sec. 5). The tiling cases
identified by this investigation as being the only possible tilings of this class are DE-regular
cases 7, 10, 11, 12, 14, 16, 20, and 21 (eight kinds), and DE-reversed cases 2–7 (six kinds),
representing a total of 14 tilings (SUGIMOTO and OGAWA, 2003b). These tilings (both
periodic and non-periodic) will be investigated in more detail in another report.

The tiles eliminated by topological judgment investigation but confirmed by geometric
judgment cannot be immediately eliminated as invalid prototiles (pentagonal tiles), as the
conclusions reached in this investigation are for specific node restrictions. If those
restrictions are relaxed, some of the cases eliminated here may become valid in topological
judgment. For example, the convex pentagons of DE-regular cases 1 and 2 and DE-reversed
cases 1 and 8 have the possibility of tilings under different node restrictions according to
topological judgment. Tilings may also be possible for DE-regular cases 3, 4, 5 and 8 if tiles
are limited to equilateral pentagons, in which case the tiles will be of the same shape as the
equilateral pentagonal tiles of DE-regular cases 10 or 12. These cases will be described in
another report.

In the investigation of the 33 cases in this classification, it is not necessary to consider
other node restrictions. That is, for pentagons with four equal-length edges, the prototiles
will always appear among the 33 cases identified in this study (SUGIMOTO and OGAWA,
2003b). The complete range of pentagons meeting each node restriction must therefore be
investigated, as will be presented in a future report.

7.  Summary

This report presented a complete list of pentagonal tiles with four equal-length edges
under the simplest node condition of one 4-valent node and two 3-valent nodes (including
the case when the two kinds are identical). These tilings consist only of convex pentagons;
no concave pentagons were found under this condition. Since the average number of
pentagons meeting at a node (vertex concentration point) in an EE tiling of convex
pentagons is 10/3, most patterns are expected to satisfy the simplest node condition
(SUGIMOTO, 1999; SUGIMOTO and OGAWA, 2000a, 2003a). Thus, there are very few
exceptional EE tilings that do not satisfy the simplest node condition, and these will be
considered in future stages of this study.

At first glance, the simplest node condition appears to apply three constraints on the
relations among the interior angles of pentagons. However, only two independent conditions
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in fact apply in this case. Furthermore, when the 4-valent node is DDEE, there is only one
independent condition. As a result, the pentagon has only one or two degrees of freedom.
The next-most simple node conditions are the cases involving a total of six kinds of nodes
(allowing the case when the some nodes are identical): two 4-valent nodes and four 3-valent
nodes, or one 5-valent node and five 3-valent nodes. In all of these cases, each of the
vertices of the pentagon appears four times at the six nodes. A maximum of six conditions
(restrictions) can thus be imposed in these situations. For cases in which there are more than
two independent conditions among these six, there are no longer any DOFs, and only
special solutions are permitted. For example, for the case of the 4-valent nodes DDDD and
EEEE, it is required that 3-valent nodes AAB and CCB are repeated use together, i.e., this
is degenerate case leaving only one DOF. This is clearly a valid case for tiling the plane,
and it is considered possible to prove a generalization regarding pentagons with one DOF.
The list of tilings including special solutions for the cases with zero DOFs will be a topic
of future research.

The research was partly supported by the Grant-in-Aid for Scientific Research (the Grant-in-
Aid for JSPS Fellows) from the Ministry of Education, Culture, Sports, Science, and Technology
(MEXT) of Japan.
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