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Abstract.  Trajectories of paramecium observed with a microscope were analyzed and it
was found that they are composed of four components, namely, Segment, Wavelike form,
Arc and Localized Direction Change (LDC). Similar experiments were conducted also in
the case that temperature gradient exists and the frequencies of LDC per unit time were
measured in both cases. Angle distributions in direction changes and some fitting
functions were obtained. It was clarified that the frequency of LDC in the case that the
paramecium moves toward the proper temperature area is less than toward improper one.
It was confirmed that random walk time scales were nearly equal to the average time
interval of LDC. Numerical simulations were conducted and the optimum value for the
probability of LDC per unit time which maximize the evaluation function was obtained.

1.  Introduction

The movement of a paramecium is nearly random walk motion. Namely, paramecia
proceed straight ahead almost time, and they then change the directions of movements
suddenly by random angles and natures of this random walk motion have been investigated
in detail (HARA, 1984; SATO and FUJIMURA, 1992). On the other hand, there exists a report
that the representative moving trajectory of paramecia in a three dimensional space is a
spiral (SUGINO and NAITOH, 1988). It is supposed that the difference between above-
mentioned two arguments originates from the difference between observation time scales
of each standpoint. In order to clarify this point, trajectories of paramecia were observed,
and the components of the trajectories were examined in the case that movements of
paramecia were reduced to two-dimensional ones. Analyses for the trajectories were
conducted from some points of view; angle distributions in the direction changes, average
time intervals of the localized direction change, and the relationship between the average
displacement and corresponding time.

The fact is also known that paramecia remember their cultivated temperature as the
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proper one and frequencies of the direction change tend to be different from each other in
the case they move towards the proper temperature and towards the improper (NAKAOKA

and OSAWA, 1977; NAKAOKA and TOYOTAMA, 1980; HARA, 1984).
As for the mechanism for direction change the following facts have been already

known. When the electric potential in a paramecium body exceeds a critical value, it
changes moving directions by vibrating its cilia (OSAWA, 2001). A change of electric
potential is realized by opening and closing potassium and calcium channels. In the case
towards the improper temperature, the electric pulses (or noises) are generated more
frequently and the frequency for the electric potential to exceed the critical values becomes
larger than toward the proper one. This mechanism is called stochastic resonance. It has
been known that some kinds of organisms adopt the principle of stochastic resonance
(DOUGLASS et al., 1993; RUSSELL et al., 1999). Consequently, paramecia continue to move
towards the proper temperature in total, and simultaneously they do not stay at one position
of the proper temperature. This tendency brings a merit which makes paramecia to explore
multiple locations of the proper temperature in a wide range, since if they reach to a location
of the proper temperature they have chances to escape from this location and visit to other
locations of the proper temperature. Some numerical simulations were conducted in order
to confirm this standpoint. In the simulations, we propose an evaluation function by which
the advantage of the characteristic of paramecia is quantified and investigate the probabilities
of the localized direction change which maximize the evaluation function.

The purpose of this thesis is to report the results of these problems.

2.  Method of Observation

2.1.  Observation
In order to take video pictures of trajectories of paramecia, the apparatus shown in Fig.

1 was set up. A water drop containing some paramecia is located on an aluminum plate and
covered with a cover glass. The depth of the water drop is limited about 0.1 mm by covering
with the cover glass, which reduces movements of paramecia to two-dimensional ones
actually. Tele-video scope was set up above the cover glass and motions of paramecia in
the sight (10 mm × 10 mm) were recorded in a video film through the video scope. The lights
were projected from one side and the bottom of the aluminum plate was painted with black
paint in order to make the contrast clear. In the case that a temperature gradient was set up,
Peltier module were placed on the both side of the aluminum plate.

In order to clarify the influences of temperature and its gradient to movements of
paramecia, observations of moving trajectories of paramecia in the following six temperature
environments, and their data analyses were conducted. Different group of Paramecium
caudatum were used in each case (hereafter called as “Paramecium” ), however all groups
were cultivated in 25°C temperature, which means the proper temperature is set up as 25°C
in the present research. The genetic origin of paramecia used in the observation is unknown,
which was not paid much attention to since the present research is based on the different
standpoint from the biological one.

Case-1. 10 trajectories in 20°C (without temperature gradient)
Case-2. 10 trajectories in 25°C (without temperature gradient)
Case-3. 10 trajectories in 28°C (without temperature gradient)
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Case-4. 11 trajectories in 25°C–20°C (with temperature gradient)
Case-5. 12 trajectories in 25°C–28°C (with temperature gradient)
Case-6. 10 trajectories in 27°C–20°C (with temperature gradient)

Each trajectory of paramecia is constructed with its pictures at every 0.1 sec.

2.2.  Analysis
The angle of direction change θ was calculated from the coordinates of the points just

before and after the change of direction as follows.
First, the displacement vector between (n–1)-th time step and n-th time step is obtained

as Dn = (xn – xn–1, yn – yn–1) from the coordinates at both time steps. Then the angle between
vector Dn and y-axis is obtained as
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where Dc is a critical value mentioned just later. Next, θn+1, the angle between the
displacement vector at the next time interval and y-axis is calculated in the same way and
the angle of direction change θ is given as

θ = θn+1 – θn.

In the case of Dn < Dc it is difficult to determine these angles with sufficient accuracy. It
is regarded that a paramecium changes its moving direction after some time units stay in
the small circle area in this case (we estimated its diameter Dc as 0.25 mm, the average body
length of a paramecium). We call this case as localized direction change (LDC). The cases

Fig. 1.  Schematic of apparatus for observation.
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other than LDC should be called as continuous direction change. LDC corresponds to the
case in which the linear motion of a paramecium can be neglected. The angle of direction
change θ in LDC is defined as the angle between the straight segment incident on this small
area and that emitted from this area. This definition for the angle of direction change is
similar to that given in some previous research for in vitro motility of F-actin fragments
(SHIKATA et al., 1994). We should notice that no thresholds were set up for the angle of
direction change in LDC and nearly null angle cases were contained in LDC.

The angle distributions for all direction change containing LDC in the cases without
temperature gradient and those in the cases with temperature gradient were examined. The
average value µ and standard deviation σ of angle of direction change were calculated for
these cases. The skewness and the kurtosis defined as

Skewness kurtosis=
−( )

=
−( )θ µ

σ

θ µ

σ

3

3

4

4, ,

were also calculated for these cases where square brackets indicate that the average values
of the quantities in the bracket are taken.

We paid much attention to LDC, since we think that a random walk motion of a
paramecium is caused by LDC. Then, time intervals of every LDC were counted for all
trajectories in all cases and the time interval distributions of LDC were investigated.

In the case that a temperature gradient was set up we classify LDC into the following
nine types, namely, one from the proper temperature region to the proper, one from proper
to neutral, one from proper to improper, one from neutral to proper, one from neutral to
neutral, one from neutral to improper, one from improper to proper, one from improper to
neutral and one from improper to improper, where the direction to the proper temperature
is designated as a region held between the line inclined at –30° to the perpendicular line to
the proper temperature boundary and that at +30°, and so on (shown in Fig. 2).

Next, we search for the time unit on which a trajectory of a paramecium can be
regarded as a random walk. In the case of a classical random walk the average value of

Fig. 2.  Definition of the proper temperature-, improper temperature- and neutral-direction.
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square of the distance from the starting point <r2> is proportional to the corresponding time
t, while in the case of a straight forward movement <r2> is proportional to t. Here, the value
<r2> corresponding to the time interval t = m∆t for each trajectory is calculated as follows:

r
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where ∆t is the time unit, on which the moving distances are measured, m an integer and
N the total number of time steps in each trajectory. Here, we compare the relationships
between <r2> and t in cases of ∆t = 2 s (almost average time interval of LDC) with that in
case of ∆t = 0.1 s (minimum time unit in observation). In the former case the coordinates
of a paramecium at every 2 seconds are extracted from the original data and the values of
<r2> is calculated according to the above definition (actually the range of m is restricted
so that m < N/2 in order to avoid few sample number cases).

3.  Results

3.1.  Classification of the components of trajectories
An example of the video pictures is shown in Fig. 3. Nine examples of the trajectories

in the case without temperature gradient (Case-1, -2, -3) and nine with temperature gradient
(Case-4, -5, -6) were shown in Figs. 4 and 5 respectively. In these figures the dots designate

Fig. 3.  An example of video picture for trajectories of paramecia
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Fig. 4.  Examples of trajectories of paramecia. (a)–(c) in the case of 20°C (without temperature gradient), (d)–
(f) in the case of 25°C, and (g)–(i) in the case of 28°C. Components of trajectories are shown in Table 1.
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Fig. 5.  Examples of trajectories of paramecia. (a)–(c) in the case of 25°C–20°C (with temperature gradient), (d)–
(f) in the case of 25°C–28°C, and (g)–(i) in the case of 27°C–20°C. Components of trajectories are shown
in Table 1.
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the locations of the center of a paramecium at every 0.1 second. From these figures we can
find that the trajectories are consisted of four kinds of factors approximately as follows:

(1) Segment which is almost straight (hereafter called as Segment);
(2) Wavelike form (hereafter called as Wavelike);
(3) Arc (almost whole circle or semi-circle);
(4) Localized direction change (“LDC”).

Although it is difficult to give these factors exact definitions, it is available to classify each
part of the trajectories into these factors since it makes our pattern recognitions for
trajectories of paramecia possible with ease. The form of each trajectory can be approximately
explained with these terms. For example, the case 1 (shown in Fig. 4(a)) is consisted of the
some “Segment” s, the case 3 (shown in Fig. 4(d)) some “Segment” s and “LDC” s and so
on. The components of each trajectory are shown in the Table 1. In the case of LDC
paramecium stays at almost one position during an “LDC”

3.2.  Angle distributions in direction change in all trajectories
The angle distributions for Case-1, -2, -3 (without temperature gradient case) were

shown in Fig. 6(a) and those for Case-4, -5, -6 (with temperature gradient) in Fig. 6(b).
Average, Standard deviation, Skewness and Kurtosis of the angle distribution in all cases
are listed in Table 2. It is known that in the case of Gaussian distribution the value of the

Case number Components of trajectory Corresponding figure number

Case-1 (20°C) Segment Fig. 4(a)
Segment + LDC Fig. 4(b)
Segment + LDC Fig. 4(c)

Case-2 (25°C) Wavelike + LDC Fig. 4(d)
Segment + Wavelike + LDC Fig. 4(e), Fig. 8(c)
Segment + Wavelike + LDC Fig. 4(f)

Case-3 (28°C) Segment + Arc + LDC Fig. 4(g)
Wavelike + LDC Fig. 4(h)
Segment + Arc + LDC Fig. 4(i)

Case-4 (25°C–20°C) Segment + LDC Fig. 5 (a), Fig. 8(a)
Segment + Wavelike + LDC Fig. 5 (b)
Segment + Wavelike + LDC Fig. 5 (c)

Case-5 (25°C–28°C) Wavelike + Arc + LDC Fig. 5 (d), Fig. 8(b)
Segment + Wavelike + LDC Fig. 5 (e)
Segment + Wavelike + LDC Fig. 5 (f)

Case-6 (27°C–20°C) Segment + LDC Fig. 5 (g)
Segment + Wavelike + Arc + LDC Fig. 5 (h)
Segment + Wavelike + LDC Fig. 5 (i)

Table 1.  List of the examined trajectories.
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skewness and the kurtosis are 0 and 3 respectively.
We can find from these figures and table that the distributions are almost symmetric

for the vertical axes (the Average are negative for all cases, however the absolute values
of them are less than 0.4° in all cases, and the absolute values of Skewness are less than 0.2
in all cases ). It should be noted that Standard deviations are within the range 46–54° in all
cases. The value of kurtosis is larger than that of Gaussian, 3.0  in all the cases, which means
that the frequencies for extremely small and large angles are larger than those for Gaussian
and those for intermediate angles are smaller. It was examined whether these angle
distributions are fitted by some analytical functions or not, and it was found that these
distributions are well fitted by the function

f

c

θ β

θ α
β( ) =

( ) +( )
+

2 2
1

2

Fig. 6.  Angle distributions in all direction change in case (a) without and (b) with temperature gradient.
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as shown in Fig. 7, where θ is angle of direction change. The fitting curves of this type were
introduced by the reason that these distribution functions could be related to Cauchy
distribution (Lorenz distribution) for some parameter values (TAKAYASU, 1986). Actually,
by introducing the normalized angle η  = cθ/α , this distribution function are rewritten as

F
bη
η

β( ) =
+( )

+

1 2
1

2

where b is constant and in case that β = 1, this distribution function reduces to Cauchy
distribution. The value of β is 0.242 (in case (a)) and 0.926 (in case (b)) respectively, and
in the latter case this distribution function can be regarded as Cauchy distribution
approximately. Furthermore, the asymptotic behavior of above function is F(η) ≈ η–(1+β)

at |η | >> 1, which coincide with that of Levy-distribution (OOTA, 2000). Though the
behavior of the angle distribution is similar to those of Levy distribution in the asymptotic
range, it was clarified the behavior of these distributions are hardly regarded as Levy
distribution at small θ range.

The angle distributions for LDC are shown in Fig. 8. We can see from these figures that
these angle distribution is not perfectly flat, which suggests that even in case a paramecium
change its direction after some time units stay in a small circle area, the larger the rotation
angle is the smaller its frequency becomes.

3.3.  Time interval of LDC
Time interval distribution in Case-2 (25°C, without temperature gradient) and in Case-

4 (25°C–20°C) are shown in Fig. 9. The average value of time interval of LDC is 3.79 sec
in Case-2, where the temperature environment is proper and without temperature gradient.
In the case with temperature gradient the distribution is shifted to the smaller part in total
than in Case-2. We can also find that this tendency is remarkable in case that paramecia

Table 2.  List of characteristic values of angle distributions in all direction change and average time interval LDC
for each case. The symbols (p), (i), (l), and (r) denote the case in which the paramecia move towards proper,
improper, left-side and right-side temperature respectively.

Case number Characteristics of angle distribution Total number
of LDC

Average time interval
of LDC

Average Standard
deviation

Skewness Kurtosis

Case-1 (20°C) –0.01° 48.1° –0.14 4.418 188 4.20 sec
Case-2 (25°C) –0.17 48.2 –0.17 5.014 66 3.79 sec
Case-3 (28°C) –0.03 53.8 0.060 4.609 119 1.62 sec
Case-4 (25°C–20°C) –0.12 47.4 0.020 5.644 100 3.31 s (p), 1.89 s (i)
Case-5 (25°C–28°C) –0.34 46.3 –0.12 7.104 53 3.04 s (p), 2.21 s (i)
Case-6 (27°C–20°C) –0.09 47.0 0.030 4.255 246 1.73 s (l), 1.19 s (r)
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Fig. 7.  Angle distributions in all direction change and their fitting curves in case (a) without temperature gradient
(25°C) and (b) with temperature gradient (25°C–20°C). The horizontal scales at the top of the graphs denote
the normalized angle η = cθ/α . The parameter values are shown in the figures.
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Fig. 8.  Angle distribution in LLADC in the observations in case of (a) without temperature gradient (25°C) and
(b) with temperature gradient (25°C–20°C).

move toward the improper temperature (20°C) than toward the proper one (25°C). The
average values of each case are 1.89 sec and 3.31 sec, respectively.

The total number of LDC and the values of average time intervals for all cases are
listed in Table 2. The tendency that paramecia causes LDC more frequently in case they
move towards the improper temperature than towards the proper one was observed clearly
in Case-4 and Case-5. In Case 6, the average time interval of LDC in case towards 27°C is
pretty larger than towards 20°C. It might be explained from the fact that 27°C is closer to
the proper temperature (25°C) than 20°C.

3.4.  Confirmation of the time scale for random walk
Some examples of relationships between the average value of square of the distance

from the starting point <r2> and the corresponding time t with and without temperature
gradient cases are shown in Fig. 10. We can see from these figures that <r2> is almost
proportional to time t in case of ∆t = 2 s, which suggests that the moving trajectories of
paramecium can be regarded as random walk motions if we adopt the average time interval
of LDC as time unit. No these results in case of ∆t = 0.1 s show that <r2> is proportional
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Fig. 9.  Average time interval distributions in LLADC in case (a) without and (b) with temperature gradient.

to time t, which suggests that the moving trajectories of the paramecia can be regarded as
almost straight line in the short time scales.

4.  Simulations

4.1.  Method of numerical simulations
A numerical simulation based on above-mentioned data was conducted. The following

algorism was adopted.
First, an area is a square which consisted of 600 × 600 grids. Nine higher temperature

points with 30°C are located with same intervals in the area and minimum temperature
points with 10°C are located on the center of the four neighboring proper temperature
points. The temperature distribution function T(x, y) was set up as
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x y

, sin sin ,( ) = + −



 + −



 +







10 5
2

200
1

2

200
1 2

π π



32 S. SHINOHARA et al.

and the areas with the temperature range between 26°C–24°C were assumed as proper
temperature areas ( shown in Fig. 11(a)).

In giving the governing rule for the movements of a paramecium we assume that
they are consisted of two categories, straightaway motion and direction change with
random angle distributions correspond to LDC in observation. The moving distance in one
step is set up as 5 grids. Distance between two points separated by 5 grids is regarded 1.0
mm, since the average velocity of paramecium is about 1 mm/s and the time unit in the
simulations corresponds to 1 sec. It is assumed that a paramecium can detect the temperature
at present location and compare it with that at the location one time step before, and change

Fig. 10.  Examples of the relationship between <r2> and t in the case that ∆t = 2 sec and 0.2 sec for the case of
(a) 25°C–28°C, (b) 25°C–20°C and (c) 25°C.
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the moving direction with the probability Pp when it proceed toward the proper temperature
and Pn toward improper temperature with random angle change. Values of Pn, Pp per unit
time (1 sec) in observation are obtained as the inverse of average time interval of LDC and
are estimated to range from 0.24 to 0.85 (these values correspond to the inverse of 4.20 s
and 1.19 s in Table 2).

It is also assumed that the paramecium moves along the boundary when it meets to a
boundary of the total area. The number of total time steps is assumed as 18000 (corresponding
to 5 hours).

Furthermore, an evaluation function F for the behavior of the paramecium is assumed
as

Fig. 11.  Results of numerical simulations. (a) Temperature distribution, and (b) result in the case of Pp = 1.0
and Pn = 0, (c) in the case of Pp = 0.03 and Pn = 0.03, and (d) in the case of Pp = 0.36 and Pn = 0.22.

 
( a )  ( b )

 
( c )  ( d )
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where T(x, y) denotes the temperature at location (x, y) and N the frequency of visit to
location (x, y). This evaluation function is originally proposed in the present research. The
first factor fT expresses the effect that the nearer to 25 °C the temperature is, the larger the
value accompanied with the point is. The factor fN expresses the effect that the larger the
frequency of the visit to a same location becomes, the smaller the values newly added to
F is.

Computations for several values of Pp and Pn were conducted and the combination of
Pp and Pn which maximizes F was searched for under some values of γ and δ.

4.2.  Results of numerical simulations
Results under the condition that γ = 0.007, δ = 2.0 are shown in Figs. 11(b)–(d). In the

case that Pn = 1.0 and Pp = 0, while factor fN is large, the number of the visited proper
temperature area is only two (shown in Fig. 11(b)), which brought the low value of F. In
the case of Pn = 0.03, Pp = 0.03, in contrast, while the number of visited proper area is large,
the value of fT becomes very small (shown in Fig. 11(c)), which also brought low value of

Evaluation

function value

Fig. 12.  Distribution of the values of evaluation function for each combination of Pp and Pn.
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F. In the case of Pn = 0.36, Pp = 0.22 (Pn/Pp = 1.6), the maximum value of F was obtained
(shown in Fig. 11(d)). The distribution of evaluation function F for all combination of Pp
and Pn is shown in Fig. 12.

In the case that γ = 0.007, δ = 2.0, the ratio of Pn to Pp which maximizes F is obtained
as Pn/Pp = 0.36/0.22 = 1.6. On the other hand, the value of Pn/Pp in observation is obtained,
for example, as 0.53/0.30 = 1.77 in Case-4 in Table 2 (the value of Pn, Pp in observation
are obtained as the inverse of average time interval of LDC 1.89 s and 3.31 s). Both values
almost coincide with each other. The angle distribution of the all direction change in this
case is shown in Fig. 13. The comparison between the angle distribution in Fig. 13 and those
in Fig. 7(b) is given in the next section.

5.  Discussions

Here, we mention some comments about the angle distribution for direction change.
First, we mention about the accuracy of the determination of angle θ. It is supposed

that ∆θ, the error in θ is mainly caused by the error generated in the process of reading x
and y coordinates. If the angle θ is determined by the expression θ = arctan(∆x/∆y) and the
infinitesimal errors ξ  and ζ  are introduced to the reading value of ∆x and ∆y respectively,
the error ∆θ can be estimated as

∆
∆ ∆

∆ ∆
∆ ∆

θ θ ξ θ η ξ ζ= ∂
∂( )

+ ∂
∂( ) = ⋅ + ⋅

( ) + ( )x y

y x

x y2 2 .

If ∆x and ∆y are assumed to be same order, the order of ∆θ is regarded as

O O x∆ ∆θ ξ( ) = ( )/ .

Fig. 13.  Angle distribution of direction change in the simulation.
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The magnitude of ξ is estimated as 0.014 mm which corresponds to 1 pixel. The minimum
value of ∆x, which gives the maximum value of ∆θ, can be regarded as the diameter used
for the definition for LDC, and is given as about 0.25 mm, the twice of the paramecium body
length. Thus, the maximum value of ∆θ is given as ∆θ = 0.014/0.25 = 0.056 rad = 3.2°. This
value is much smaller than that of angle interval in the angle distributions in Fig. 7.

Secondly, we mention about the comparison between the angle distributions shown in
Fig. 7(b) (the case with temperature gradient 20°C–25°C in the observation) and in Fig. 13
(the case of Pn = 0.36, Pp = 0.22 in the simulation). At a first look both distributions seem
to be similar to each other, however, by more precise observation we can find that the latter
has a sharper peak around the null direction change than the former. The reason of this
difference can be explained as follows. In the case of Fig. 7(b) the probability of LDC per
unit time Pp and Pn are given as Pn = 0.53, Pp = 0.30, which is pretty larger than those in
Fig. 13. Furthermore, the angle distribution in Fig. 7(b) contains both the events originated
from angle change for LDC and those for others (continuous direction change), while in
Fig. 13 only from LDC. As a result the rate of null angle change (corresponding to straight
forward case) is higher in the case of Fig. 13 than in Fig. 7(b).

As for the comparison between the present research and other ones, some results for
the angle distribution in the temporal evolution of the position of the center of the mass in
human postural sway is known (TAKADA et al., 2001). They obtained the result in the
observation that the frequency in the small direction change is large, while it is flat in the
simulation. It is supposed that they used the model that random external forces are applied
at every time steps in their simulation (the external forces is given by pseudo random
number (LEHRER, 1951)). On the other hand, in the simulation of the present research, one
random direction change of a paramecium is given in several time steps and null angle
direction change is also included in the total number of direction change, which brings no
perfectly flat distributions. As for the angle of direction change for in vitro motility of F-
actin fragments (SHIKATA et al., 1994; SHIMO and MIHASHI, 2001), the effect of the length
of F-actin was taken into considerations. Especially it was clarified by SHIKATA et al.
(1994) that the angle distributions of direction change of F-actin depend on its body length.
On the other hand, in the present research the length of paramecium is taken into
consideration only for the estimation for Dc and the movement of the center of mass of a
paramecium is treated.

Thirdly, we consider the effects of the sampling time on the angle distribution. By
assuming that the moving velocity of a paramecium is 1 mm/s, its body length 0.2 mm, we
can estimate the time to travel the distance of its body length is about 0.2 s. It is supposed
that if we had adopted much shorter sampling time than this value, the errors in the
measurement would have been much larger than the present ones. On the other hand, it is
supposed that in the case of much larger sampling time (for example, ∆t = 2 s) the angle
distribution would be too flat, since the trajectories approaches to those for random walks.
Then we think that the value of the sampling time used in the present research, ∆t = 0.1 s,
is an appropriate one to examine the angle distributions.

Next, we add some comments for the simulation.
First, we mention about the way of setting up the evaluation function. Two parameters

α , β are contained in the present evaluation function, and it should be noted that the values
of Pn and Pp which maximizes F are different from the present one in case of other sets of
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γ, δ. Furthermore, other forms than the present ones for fT and fN would be possible if they
had similar behavior to those of present ones. In this sense what we could clarify in the
present research is that the values obtained in the observation for probabilities of LDC
maximize the evaluation function if an evaluation function and parameter values contained
in it are adopted appropriately. Although we have no means to determine the unique form
of evaluation function, we think it is important that behaviors of paramecia can be
accounted for by the idea that they behave so that an evaluation function is maximized or
minimized.

Second, it is assumed in the present simulation that a paramecium can know the
temperature gradient by detecting the temperature values at different locations corresponding
to successive two time steps. This assumption is based on the fact that the reactions of
paramecia to temperature are caused by the temporal derivative of temperature not by the
spatial gradient of it directly. The value of the temporal derivative of temperature set up in
the present simulations is about 0.5 deg/s if the average speed of paramecium is regarded
1 mm/s, which exceeds the critical value of temporal derivative of temperature which cause
the reaction of paramecia, 0.055 deg/s, sufficiently (NAITO, 1990).

Third, we mention about the relationship between the algorism of the present
simulation and stochastic resonance. Although we noticed that the mechanism of stochastic
resonance lies beyond the apparent behaviors of paramecia, we did not adopt an algorism
which directly related to stochastic resonance and contains electric potential of paramecium.
One reason is that no electric potentials were measured in the present research and we could
have given no comparisons between the electric potentials in simulation and those in
experiments. Another reason is that we can reach the purpose of the present research
through the way of the present simulation, which is based on the apparent behavior of
paramecia such that the probability of LDC depend on whether they moves towards the
proper temperature or not.

Lastly we mention about the future subjects. It has been pointed out that behaviors of
paramecia depend on the number density of them. Standing at this point some correlations
and interactions between neighboring trajectories should be examined in the above-
mentioned analyses and also numerical simulations for behaviors of plural paramecia
should be conducted. We are planning these researches as next subjects.

6.  Conclusions

The main conclusions of the present research are summarized as follows.
First, the trajectories of paramecia are consisted of four kinds of factors, “Segment”,

“Wave-like pattern”, “Arc” and “LDC” (Localized Direction Change).
Second, the angle change distributions for all trajectories in the cases with and without

temperature gradient were obtained, and it was found that the kurtosis of the present
distributions were larger than that of Gaussian distribution, and some fitting function were
obtained.

Third, it was clarified that in the case that average time interval of LDC is adopted as
a time unit, trajectories of paramecia can be regarded as random walk motions.

Fourth, in the numerical simulations the optimum value for the probability of direction
change that maximizes the evaluation function was obtained.
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