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Abstract.  Let us consider an edge-to-edge and strongly balanced tiling of plane by
pentagons. A node of valence s (≥3) in an edge-to-edge tiling is a point that is the common
vertex of s tiles. Let W1 be a finite closed disk satisfying the property that the average
valence of nodes in W1 is nearly equal to 10/3. Then, let T denote the union of the set of
pentagons meeting the boundary of W1 but not contained in W1 and the set of pentagons
contained in W1, and let Vs denote the number of s-valent nodes in T. If the tiling in T is
formed of only 3- and k-valent nodes, then V3 : Vk ≈ 3k – 10 : 1 where k ≥ 4. On the other
hand, if the tiles in edge-to-edge tiling are congruent convex pentagons, then at least two
of the edges (of this congruent convex pentagon) are of equal length.

1.  Introduction

Tiling refers to coverage of the plane with polygons (tiles) without gaps or overlapping.
Especially a single congruent polygon that tiles the Euclidean plane is called a prototile or
a polygonal tile, and the plane tiling with convex polygons has primarily been studied in
an attempt to exhaust all the conditions of prototile. The current state of knowledge in the
tilings by congruent polygons can be summarized as follows. Any single triangle and
quadrilateral, including concave quadrilaterals, is tileable (i.e., all prototiles), since the
sums of the (interior) angles of triangles and quadrilaterals divide evenly. On the other
hand, tiling with other convex polygons is not necessarily possible because of constraints
on angles and edge-lengths. In the case of convex hexagons, prototiles can be categorized
into three types (BOLLOBÁS, 1963; GRÜNBAUM and SHEPHARD, 1987; SUGIMOTO, 1999).
For the convex polygons with seven or more edges, no prototiles exist. For the convex
pentagons, there are at present 14 types (see Figs. 1 and 2), but it remains unproven whether
this is the perfect list of such pentagons (KERSHNER, 1968; GARDNER, 1975; KLARNER,
1981; GRÜNBAUM and SHEPHARD, 1987; SCHATTSCHNEIDER, 1987; WELLS, 1991;
SUGIMOTO, 1999; SUGIMOTO and OGAWA, 2000, 2003c, 2005). As shown in Figs. 1 and 2,
each of convex pentagonal tiles is defined by some conditions between lengths of edges and
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Fig. 1.  Convex pentagonal tiles of type 1–10.
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Fig. 2.  Convex pentagonal tiles of type 11–14.

magnitudes of angles; but some degrees of freedom remain. (However, only the pentagonal
tile of type 14 has one degree of freedom, that of size. For example, the exact value of C
in pentagon of type 14 is cos–1((3 57  – 17)/16) ≈ 1.2099 rad ≈ 69.32°, and the values of
angle B, D, and E can be obtained by C.) Then, unless a convex pentagonal tile is a new
prototile, any convex pentagonal tile belongs to one or more of 14 types.

In the study of tiling the plane with congruent convex polygons, the case of pentagon
is the only unsolved problem. Then we believe that the problem has yet to be approached
from a new point of view. For example, the tilings themselves can be distinguished into two
kinds by the connecting method: edge-to-edge tilings and non-edge-to-edge tilings. In
edge-to-edge tilings, the vertices and edges of polygons coincide with the vertices and
edges of the tiling. In non-edge-to-edge tilings, the vertices of polygons may contact the
edges of adjoining polygons, that is, there is no restriction on how adjoining polygons meet.
As to the pentagonal tilings, though the edge-to-edge tilings are still pentagonal even in
topological point of view, the non-edge-to-edge tilings are not. However, the distinction
between these two connecting methods is seldom done in the previous studies of convex
pentagonal tiling problem. Our interest lies more in edge-to-edge tiling since it is more
essential (OGAWA et al., 2001; SUGIMOTO and OGAWA, 2000, 2003a, 2003c, 2005).
Therefore, throughout the report, we will consider only edge-to-edge tiling. Hereafter, as
long as cautions are unnecessary, an edge-to-edge tiling is written simply a tiling. On the
other hand, so far the classification and exhaustive studies of tilings are not very much
noticed to the present. However, for convex pentagonal tiles, it will be impossible to
express the necessary and sufficient conditions for identifying prototiles without classifying
tilings. Therefore, we should pay attention to the properties of tilings. First, in this report,
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we show the properties which become important and famous in tiling with polygons (see
Proposition in Subsection 2.2). Next, the properties about pentagonal tiling are shown (see
Theorem 1 in Subsection 2.3, Theorem 2 in Subsection 2.4, and Theorem 4 in Section 3)
and the classification of convex pentagons with equal edges is also shown (see Table 2 in
Section 3).

2.  Properties of Nodes in Strongly Balanced Tilings

2.1.  Definition
A node of valence κ in a tiling is a point that is the common vertex of κ polygons (tiles).

That is, in this report, hereafter a vertex of a tiling is called a node. Note that the valence
κ of a node is at least three.

Given a tiling, the first corona of a tile is the set of all tiles that have a common
boundary point with that tile (including the original tile itself).

Two tiles are called adjacent if they have an edge in common, and then each is called
an adjacent of the other. Therefore, in an edge-to-edge tiling by polygons, the number of
adjacents of a polygon is equal to the number of edges of that. Then, a polygon with h edges
(and therefore h vertices) will be called a h-gon.

A tiling by polygons is called normal if there are positive numbers r and R such that
any polygon contains a certain disk of radius r and is contained in a certain disk of radius
R.

Given a normal tiling � by polygons, let W be a closed disk of radius ρ (>0) on the
plane. Then, let F1 and F2 denote the set of the polygons contained in W and the set of
polygons meeting the boundary of W but not contained in W, respectively. Here, define
F := F1 � F2 (i.e., F is the set of polygons generated by W). We denote by P(F) the number
of polygons in F. In addition, let E(F) and N(F) denote the number of edges and nodes in
F, respectively. The tiling � is balanced if it is normal and satisfies the following condition:
the limits

lim lim
ρ ρ→∞ →∞

( )
( )

( )
( ) ( )N F

P F

E F

P F
   and   1

exist and are finite (GRÜNBAUM and SHEPHARD, 1987).
Now, let Ph(F) and Nκ(F) be the number of polygons with h adjacents in F and the

number of κ-valent nodes in F, respectively. The tiling � is strongly balanced if it is normal
and satisfies the following condition: all the limits

lim lim
ρ ρ

κ
→∞ →∞

( )
( )

( )
( ) ( )P F

P F

N F

P F
h    and   2

exist (GRÜNBAUM and SHEPHARD, 1987).
Note that, in the following Subsection 2.2, the strongly balanced condition is not

needed.



Properties of Tilings by Convex Pentagons 117

2.2.  Average valence of nodes in balanced tilings by polygons with h edges
Given a normal tiling � of plane by polygons and let P(F2) denote the number of

polygons in F2. Since � is normal, then (see GRÜNBAUM and SHEPHARD, 1987; BAGINA,
2004):

lim .
ρ→∞

( )
( )

= ( )P F

P F
2 0 3

Hereafter, let N(W) be the number of nodes of the tiling contained in W.

Lemma 1.  Given a normal tiling �, if the radius ρ of the disk W tends to infinity then

lim .
ρ→∞

( )
( )

= ( )N W

N F
1 4

Proof.  First, we consider the upper bound for the number of edges in a polygon in �. Let
p0 be any polygon. We suppose that m polygons contact p0. So, the first corona of p0 in tiling
� is contained in some disk of radius 3R. Since any polygon of � contains a disk of radius
r and these disks do not overlap, we have

m r R m
R

r
+( ) < ( ) < −1 3 9 12 2

2

2π π    or   .

Therefore the upper bound for the number of edges in a polygon is 9(R2/r2) – 1.
Thus, for the number N(F) – N(W) we have:

N F N W
R

r
P F( ) − ( ) < ⋅ ( ) ( )9 5

2

2 2 .

Next, we consider the upper bound of valence of nodes in �. We take a node G of
valence κ, draw a circle of radius 2R centered at a node G. It contains fully the star of node
G in the tiling. Since this star contains κ polygons, we get

κ π π⋅ < ( )r R2 22 .

Hence for any valence κ then:

κ < ( )4 6
2

2
R

r
.

Now we will prove that
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N F
r

R
P F( ) > ⋅ ( ) ( )3

4
7

2

2 .

Let ui denote the number of vertices in the i-th polygon in F (i = 1, ..., P(F)). Since ui ≥ 3
for any i ∈ {1, ..., P(F)}, then

u P Fi
i

P F

≥ ⋅ ( )
=

( )
∑ 3

1

.

On the other hand, from (6) and N(F) (the number of nodes of the tiling in F), at most
4(R2/r2)·N(F) vertices of polygons exist in F. Therefore, for the number of vertices of
polygons from F, we have

4 3
2

2
1

R

r
N F u P Fi

i

P F

⋅ ( ) > ≥ ⋅ ( )
=

( )
∑ .

Therefore, we obtain the inequality (7).
Given R and r, from (5) and (7), we have

N F N W

N F

N W

N F

P F

P F

R

r

R

r

R

r

P F

P F

( ) − ( )
( )

= − ( )
( )







<
( )
( )

⋅ ⋅ =
( )
( ) ( )1

9 4

3
12 82

2

2

2

2

4

4
2 .

Thus, if ρ → ∞, the relation (4) is derived from (3) and (8). �
Now, let K(W) and K(F) be the sum of valences of N(W) nodes of the tiling contained

in W and the sum of valences of N(F) nodes of the tiling in F, respectively;

K W K Fj
j

N W

j
j

N F

( ) = ( ) =
=

( )

=

( )
∑ ∑: :κ κ

1 1

   and   

where κj is the valence of j-th nodes of the tiling in F (j = 1, 2, ..., N(W), ..., N(F)).

Lemma 2.  Given a normal tiling �, if the radius ρ of the disk W tends to infinity then

lim .
ρ→∞

( )
( )

= ( )K W

K F
1 9

Proof.  From (6) and the fact that the valence of a node is at least three, we have

4 3
2

2
R

r j> ≥κ .
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Therefore:

4 3
2

2
R

r
N F K F N F⋅ ( ) > ( ) ≥ ⋅ ( )

and

4 3
2

2
R

r
N F N W K F K W N F N W( ) − ( )( ) > ( ) − ( )( ) ≥ ⋅ ( ) − ( )( ).

Hence, we have

4

3

3

4

2

2

2

2

R

r
N F N W

N F

K F K W

K F

N F N W

R

r
N F

( ) − ( )( )
⋅ ( )

> ( ) − ( )
( )

>
⋅ ( ) − ( )( )

⋅ ( )

or

4

3
1 1

3

4
1 10

2

2

2

2
R

r

N W

N F

K W

K F

r

R

N W

N F
− ( )

( )






> − ( )
( )







> − ( )
( )







( ).

Given R and r, if ρ → ∞, the relation (9) follows from (10) and Lemma 1. �
From the statement 3.3.5 (“a normal tiling in which every tile has the same number of

adjacents is balanced”) in GRÜNBAUM and SHEPHARD (1987) p. 133, a normal tiling by
h-gons (h ≥ 3) is balanced. (Note that, in this report, we consider the edge-to-edge tiling.)
Hereafter, in this Subsection, we will consider a balanced tiling �h of plane by h-gons.

Then, we derive the limits lim
ρ→∞

( ) ( )( )E F P F  = h/2, lim
ρ→∞

( ) ( )( )N F P F  = (h/2) – 1, and

lim
ρ→∞

( ) ( )( )P F P Fh  = 1 (i.e., the values of limits in (1) and in one of (2) are able to be

obtained). The tiling �h satisfies Lemmas 1 and 2.

Here, denote κ  := lim
ρ→∞

( ) ( )( )K F N F , and it is called the average valence of nodes in

�h.

Proposition.  Given a balanced tiling �h by h-gons (h ≥ 3), the κ  is found as follows:

κ =
−

( )2

2
11

h

h
.

Proof.  Fix a disk W with large radius ρ in �h. Then the sum of angles of P(F) h-gons in
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a set F of h-gons generated by W and the sum of angles of P(F) – P(F2) h-gons, of the tiling
contained in W, are (h – 2)π·P(F) and (h – 2)π·(P(F) – P(F2)), respectively. Since the total
sum of angles meeting at the N(W) nodes, of the tiling contained in W, is 2π·N(W), we have

h P F N W h P F P F−( ) ⋅ ( ) > ⋅ ( ) > −( ) ⋅ ( ) − ( )( )2 2 2 2π π π

or

1
2

2
1 2> ⋅ ( )

−( ) ⋅ ( )
> −

( )
( )







N W

h P F

P F

P F
.

Therefore, due to (3), as ρ → ∞,

2

2
1 12

⋅ ( )
−( ) ⋅ ( )

→ ( )N W

h P F
.

On the other hand, the total number of edges for P(F) h-gons in F and the total number
of edges for P(F) – P(F2) h-gons, of the tiling contained in W, are h·P(F) and
h·(P(F) – P(F2)), respectively. Let κ W  denote the average valence of nodes contained in
W; κ W  := K(W)/N(W). Then we have

h P F N W h P F P FW⋅ ( ) ≥ ⋅ ( ) ≥ ⋅ ( ) − ( )( )κ 2

or

1 1 2≥ ⋅ ( )
⋅ ( )

≥ −
( )
( )







κ W N W

h P F

P F

P F
.

Therefore, as ρ → ∞, from (3), we have

κ W N W

h P F

⋅ ( )
⋅ ( )

→ ( )1 13.

From Lemmas 1 and 2 the limits

κ κ κ
ρ ρ ρ ρ

= ( )
( )

= ( )
( )

= ⋅ ( )
( )

= ( )
→∞ →∞ →∞ →∞

lim lim lim lim
K F

N F

K W

N W

N W

N W
W

W 14

exists and is finite.
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Thus, the relation (11) follows from (12), (13), and (14). �
From Proposition we have the average valences for the cases of triangles (h = 3), of

quadrilaterals (h = 4), of pentagons (h = 5), and of hexagons (h = 6) as in Table 1. These
results for h = 3, 4, and 6 are well known. (Note that, in order to prove other theorems in
this report, we proved the Proposition exactly according to the definition of this research.)
For h = 5, the average valence is 10/3 ≈ 3.33 ···. Since the average valence is not an integer
then there must be nodes with valences smaller than 3.33 ···. But the smallest valence at
node is three. So in any normal tiling of plane by pentagon there must be nodes with valence
3. In addition, for the same reason (the average number is not an integer), there are no tilings
with all nodes of the same valence. If Eq. (11) is applied to the convex polygons with seven
or more edges (i.e., h ≥ 7), their tilings are impossible, since the average valence of nodes
is smaller than 3 when h ≥ 7. Therefore, in the case of convex polygons with seven or more
edges, we can understand that no balanced tiling exists.

2.3.  Rates of 3- and k-valent nodes in strongly balanced tilings by pentagons
The following arguments are relevant to strongly balanced tilings by pentagons. Then,

every strongly balanced tiling is necessarily balanced.
Let �5 be a strongly balanced tiling of plane by pentagons. Hereafter, we denote

Ns (s ≥ 3) as the number of s-valent nodes in F of pentagons generated by a closed disk W
on a pentagonal tiling �5.

Lemma 3.  Given a pentagonal tiling �5, if �5 is formed of only 3- and k-valent nodes, then

lim
ρ→∞

= − ( )N

N
k

k

3 3 10 15

where k ≥ 4.

Proof.  When the radius ρ of the disk W tends to infinity (i.e., ρ → ∞), the limit lim
ρ→∞

( )N Nk3

exists since �5 is strongly balanced.
The total number of nodes in F is N3 + Nk and the sum of valences of nodes in F is

3N3 + k·Nk. Therefore, from Proposition, we have

Table 1.  Average valence κ  of nodes in balanced tiling by h-gons.

h-gon κ  (average valence of nodes)

Triangles (h = 3) 6
Quadrilaterals (h = 4) 4
Pentagons (h = 5) 10/3
Hexagons (h = 6) 3
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lim lim .
ρ ρ→∞ →∞

+ ⋅
+

=
+

+
= ( )3

3

1

10

3
163

3

3

3

N k N

N N

N

N
k

N

N

k

k

k

k

Hence, from (16), we obtain (15). �
Here, we consider a closed disk W1 of finite radius ρ1 (R << ρ1 < ∞) on the strongly

balanced pentagonal tiling �5. In addition, we assume that W1 satisfies the property that the
average valence of nodes in W1 is nearly equal to 10/3. Then, let T denote the finite set of
pentagons generated by W1. Therefore, the each number of pentagons and nodes in T is
finite. Note that the set T needs to be finite since we discuss about the number of nodes in
a tiling such as Theorem 1. Hereafter, we denote Vs (s ≥ 3) as the number of s-valent nodes
in T.

Theorem 1.  If the tiling in T is formed of only 3- and k-valent nodes, then

V3 : Vk ≈ 3k – 10 : 1 (17)

where k ≥ 4.

Proof.  It is clear from Lemma 3. �

Corollary 1.  If the tiling in T is formed of only 3- and 4-valent nodes, then

V3 : V4 ≈ 2 : 1. (18)

Corollary 2.  If the tiling in T is formed of only 3- and 6-valent nodes, then

V3 : V6 ≈ 8 : 1. (19)

Proof.  When k = 4 and 6 in (17) of Theorem 1, (18) and (19) are obtained, respectively. �
Now, Corollaries 1 and 2 can be applied to tilings with congruent convex pentagons.

If a tiling is edge-to-edge, it satisfies Theorem 1. As a result, for convex pentagonal tiles
in Figs. 1 and 2, we find that tilings of type 4, 6, 7, 8, and 9 satisfy (18), and tiling of type
5 satisfies (19) (SUGIMOTO, 1999; SUGIMOTO and OGAWA, 2003c, 2004). Note that,
although the tilings of type 1 and 2 in the list of 14 types are generally non-edge-to-edge
(see Fig. 1), tilings by convex pentagonal tiles which belong to type 1 and 2 can be edge-
to-edge in special cases. For example, a convex pentagonal tile with “A + B + C = 360°,
a = d” belongs to type 1 according to the present classification scheme has an edge-to-edge
tiling (see Fig. 3(a)). Similarly, a convex pentagonal tile satisfying the condition
“A + B + D = 360°, a = d, c = e” is of type 2, and has an edge-to-edge tiling (see Fig. 3(b)).
Then, the tilings by these two pentagons satisfy (18) together. Like these examples, when
the tilings by congruent convex pentagonal tiles which belong to type 1 or 2 are edge-to-
edge, in the range which we know, the tilings satisfy (18).
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Among 14 convex pentagonal tilings in Figs. 1 and 2, the tiling which satisfies (17)
is not found in the case of k = 5 or k ≥ 7.

2.4.  Remarks
For the tilings (especially periodic tilings) by congruent convex pentagons, the

properties κ  = 10/3 and (17) should be realized not only globally but also locally. That is,
the properties should be included in the fundamental regions of their periodic tilings.

Here, let us investigate the properties of tilings by congruent convex pentagons from
the point of our analysis in previous subsections. First, the tilings of type 4, 6, 7, 8, and 9
(see Fig. 1) satisfy (18). They have three kinds of nodes. Especially, the tilings of type 6,
7, 8, and 9 are formed of two kinds of 3-valent nodes and one kind of 4-valent node
(SUGIMOTO, 1999; SUGIMOTO and OGAWA, 2003a, 2003b, 2004). For example, the tiling
of type 6 in Fig. 1 is formed of three kinds of nodes satisfying A + B + D = 360°,
2E + A = 360°, and 2C + B + D = 360°. In the three (= 2 + 1) kinds of nodes, each of the
five vertices A, B, C, D, and E of pentagon appears twice; i.e., the total number of vertices
is 10 (= 5 × 2 = 3 × 2 + 4 × 1). As a result, we see the relations 10/3 and (two kinds of 3-
valent nodes) : (one kind of 4-valent node) = 2 : 1. In addition, for the pentagonal tilings
that have two-kinds of 3-valent nodes and one-kind of 4-valent node, the even number of
pentagonal tiles are necessary in order to form the fundamental region since each of the five
vertices of pentagon is used twice in the three kinds of nodes. On the other hand, the tiling
of type 4 in Fig. 1 is formed of three kinds of nodes satisfying A + B + D = 360°, 4C = 360°,
and 4E = 360°. That is, there are one-kind of 3-valent nodes and two-kind of 4-valent nodes
in the tiling. When there are four vertices C and four vertices E (i.e., 4C = 360° and
4E = 360°) in the tiling, the number of vertices A, B, and D also need to be four, respectively.
Therefore, one “4C = 360°” and one “4E = 360°” have to correspond to four
“A + B + D = 360°”. Hence, (total four 3-valent nodes) : (two kinds of 4-valent nodes) =
4 : (1 + 1) = 2 : 1, and six (= 4 + 1 + 1) nodes are constructed at 20 (= 5 × 4 = 3 × 4 + 4 ×

Fig. 3.  Tilings by congruent convex pentagons. (a) Convex pentagonal tiles belong to type 1. (b) Convex
pentagonal tiles belong to type 2.
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1 + 4 × 1) vertices of pentagons; namely 20/6 = 10/3. Thus, for the tiling of types 4 in Fig.
1, the fundamental region is formed of the four pentagonal tiles. Next, the tiling of type 5
satisfies (19) and is formed of three kinds of nodes satisfying B + D + E = 360°, 3A = 360°,
and 6C = 360° (see Fig. 1). In order to form the fundamental region of the tiling of type 5,
six pentagonal tiles are necessary. Therefore, in the combinations by using the node
conditions B + D + E = 360°, 3A = 360°, and 6C = 360°, each of the five vertices A, B, C,
D, and E of pentagon has to appear six times. Thus, six “B + D + E = 360°” and two
“3A = 360°” have to correspond to one “6C = 360°”; i.e., (total eight 3-valent nodes) : (one
kind of 6-valent node) = (6 + 2) : 1 = 8 : 1. Furthermore, since nine (= 6 + 2 + 1) nodes
are constructed at 30 (= 5 × 6 = 3 × 6 + 3 × 2 + 6 × 1) vertices of pentagons, we see the relation
30/9 = 10/3.

Now, based on the properties that are locally realized, we consider the cases that the
tiling in T is formed of the nodes of three or more kinds of valence. Note that the 3-valent
nodes in T exist necessarily.

If the tiling in T is formed of only 3, 4, and 5-valent nodes, then

V3 : V4 : V5 ≈ (2x + 5y) : x : y, (20)

where x = 1, 2, 3, ... and y = 1, 2, 3, ... . We will prove this relation later. The total number
of pentagonal vertices on nodes in T is (3V3 + 4V4 + 5V5), and the total number of nodes in
T is (V3 + V4 + V5). Since T is the finite set of pentagons generated by W1 and the average
valence of node in W1 is nearly equal to 10/3, (3V3 + 4V4 + 5V5)/(V3 + V4 + V5) ≈ 10/3.
Therefore, V3 is nearly equal to 2x + 5y for V4 = x and V5 = y. Here, we consider the concrete
character of tiling that satisfies (20). For example, if it is possible that the pentagonal tiling
satisfies V3 : V4 : V5 ≈ 12 : 1 : 2, the pentagons of number of the multiple of 10 are necessary
in order to form the fundamental region. It is because that, when each of the five vertices
A, B, C, D, and E of pentagon appear ten times, 15 (= 12 + 1 + 2) nodes are constructed at
50 (= 5 × 10 = 3 × 12 + 4 × 1 + 5 × 2) vertices of pentagons (i.e., 50/15 = 10/3).

From similar consideration, we can obtain the following relations.
If the tiling in T is formed of only 3-, 4-, and 6-valent nodes, then

V3 : V4 : V6 ≈ (2x + 8y) : x : y, (21)

where x = 1, 2, 3, ... and y = 1, 2, 3, ... .
If the tiling in T is formed of only 3-, 5-, and 6-valent nodes, then

V3 : V5 : V6 ≈ (5x + 8y) : x : y, (22)

where x = 1, 2, 3, ... and y = 1, 2, 3, ... .
If the tiling in T is formed of only 3-, 4-, 5-, and 6-valent nodes, then

V3 : V4 : V5 : V6 ≈ (2x + 5y + 8z) : x : y : z, (23)

where x = 1, 2, 3, ..., y = 1, 2, 3, ..., and z = 1, 2, 3, ... .
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From the above consideration, we find the following Theorem 2.

Theorem 2.  If the valence number of all nodes in T is finite, then

V k Vk
k

3
4

3 10 24≈ −( ) ⋅ ( )
≥
∑ .

Proof.  The total number of pentagonal vertices on nodes in T is 3V3 + k Vk
k

⋅
≥
∑

4

, and the total

number of nodes in T is V3 + Vk
k ≥
∑

4
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Hence, from (25), we obtain (24). �
Besides the relations (20)–(23), it is possible to search for similar relations. However,

in the pentagonal tilings of 14 types in Figs. 1 and 2, we see that there are only tilings which
satisfy (18) or (19).

3.  Classification of Convex Pentagons with Equal Edges and Properties of Their Tiling

Pentagons can be categorized by the number of equal-length edges and their positions,
from figures with five unequal edges to those with five equal edges. Here, the edge-lengths
are designated symbolically in anticlockwise order, with identical symbols for edges of
identical lengths, and descriptions of congruent shapes with different starting points or
mirror-reflections are excluded. Beginning with equilateral pentagons, followed by those
with four equal-length edges, etc., there are a total of 12 unique combinations (see Table
2) (SUGIMOTO, 1999; SUGIMOTO and OGAWA, 2000, 2003a, 2003c, 2005). For example, the
combination [11111] in Table 2 is the pentagon with all the identical edge-lengths; i.e., it
is equilateral pentagon. On other hand, the combinations [11122] and [11212] in Table 2
are the pentagons that have the edge-lengths of two kinds, but the arrangements of five
edge-lengths are different.

Here, we summarize the study of tilings by congruent convex pentagons with
combination [11111] (i.e., equilateral convex pentagons) (HIRSCHHORN and HUNT, 1985;
SCHATTSCHNEIDER, 1987; BAGINA, 2004). Hirschhorn and Hunt gave the following
theorem.

Theorem 3 (HIRSCHHORN and HUNT, 1985).  An equilateral convex pentagon tiles the
plane if and only if it has two angles adding to 180°, or it is the unique equilateral convex
pentagon with angles A, B, C, D, E satisfying 2B + C = 2D + A = 2E + A + C = 360°
(A ≈ 89.26°, B ≈ 144.56°, C ≈ 70.88°, D ≈ 135.37°, E ≈ 99.93°).
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Fig. 4.  Pentagons P1, P2, and P3.

Therefore, the tiles of tilings by congruent convex pentagons with combination [11111]
belong to type 1, 2, or 7.

On the other hand, we give the following Theorem 4.

Theorem 4.  If the tiles in tiling are congruent convex pentagons, then at least two of the
edges (of this congruent convex pentagon) are of equal length.

Proof.  Given a tiling �c by convex pentagons, let P1 be the pentagon of edges EA = a,
AB = b, BC = c, CD = d, and DE = e (see Fig. 4). Since the nodes of valence 3 are surely
necessary in the pentagonal tiling, we suppose that the vertex A of P1 exists on a 3-valent
node. Then, let P2 and P3 be the pentagons which share edges EA and AB, respectively. In
addition, we denote AF as the common edge of P2 and P3.

If all pentagons in �c are congruent, the edge AF in P2 is equal to b or e, since P1 and

Table 2.  Twelve combination of edges of pentagon.

Edges Combination Example

Equilateral [11111] a = b = c = d = e

Two kinds [11112] a = b = c = d ≠ e
[11122] a = b = c ≠ d = e
[11212] a = b = d ≠ c = e

Three kinds [11123] a = b = c, d ≠ e, d ≠ a ≠ e
[11213] a = b = d ≠ c ≠ e, a ≠ e
[11223] e ≠ a = b ≠ c = d ≠ e
[11232] d ≠ a = b ≠ c = e ≠ d
[12123] e ≠ a = c ≠ b = d ≠ e

Four kinds [11234] a = b ≠ c ≠ d ≠ e, c ≠ e, a ≠ d, a ≠ e
[12134] a = c, b ≠ d ≠ e, b ≠ e, a ≠ b, a ≠ d, a ≠ e

Five kinds [12345] a ≠ b, a ≠ c, a ≠ d, a ≠ e, b ≠ c, b ≠ d, b ≠ e, c ≠ d, c ≠ e, d ≠ e
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P2 are adjacent with their common edge EA. Similarly, if all pentagons in �c are congruent,
the edge AF in P2 is equal to a or c, since P1 and P2 have their common edge AB. Therefore,
any 3-valent node of tiling by congruent convex pentagons with combination [12345] can
not exist. Thus, the tiling by congruent convex pentagons with combination [12345] is
impossible.

On the other hand, the tiling by congruent convex pentagon with combination [12134]
exists. For example, see the tiling by congruent convex pentagon with “A + B + C = 360°,
a = d” in Fig. 3(a). �

4.  Conclusion

In the convex pentagonal tiling problem, it is important to consider properties of
tilings and tiles both. First, when a tiling is edge-to-edge and strongly balanced, we observe
the number and kinds of nodes in tiling and gave Lemma 3 and Theorem 1 (see Subsection
2.3). Next, for tiles, we find that the pentagons can be classified into 12 kinds by the number
of equal-length edges and their positions (see Table 2) (SUGIMOTO, 1999; SUGIMOTO and
OGAWA, 2000, 2003a, 2003c, 2005). Then, we see that the tiling by congruent convex
pentagon is impossible when all edges of convex pentagon are of different length (see
Theorem 4) (SUGIMOTO and OGAWA, 2003c). On the other hand, it is known that the
equilateral convex pentagons which can tile the plane have to belong to type 1, 2, or 7 in
the present list. Among 12 cases of pentagons of Table 2, the two cases were solved. But,
the investigations about other 10 cases have not been completely finished yet.

The properties of nodes in pentagonal tiling have not been hardly noticed or formally
discussed until now. That is, before this report, there were no previous reports describing
the concrete nodes’ properties (Lemma 3, Theorem 1 and 2, and Corollary 1 and 2). In
addition, the relations between the combinations of pentagonal edges and their pentagonal
tilings had not been discussed in as much detail. Theorem 4 also had not been shown
formally until now. Hence, for the first time, we have shown and proven their properties
explicitly.

The convex pentagonal tilings problem has yet to be fully approached scientifically.
The solution to this problem requires a systematic approach. Thus, although our results
may be elementary, we assert that the properties in this report are important in order to
consider the convex pentagonal tiling problem.

We actually tackled the convex pentagonal tiling problem from the properties achieved
in this report. Specifically, for the tilings by pentagons with combination [11112] which are
formed of two kinds of 3-valent nodes (including the case when the two kinds are identical)
and one kind of 4-valent node (i.e., the tilings satisfy (18)), we investigated in SUGIMOTO

and OGAWA (2003a, 2003b, 2004, 2005). The results of SUGIMOTO and OGAWA (2003a,
2003b, 2004, 2005) are summarized as follows. According to the present classification (see
Figs. 1 and 2), the convex pentagonal tiles which are directly yielded by our investigation
belong to one or more of type 1, 2, 4, 7, 8, or 9. Therefore, as mentioned in the introduction,
a new prototile was not found in SUGIMOTO and OGAWA (2003a, 2003b, 2004, 2005).
However, our investigation on the basis of the properties shown in this report should be
applicable to create a perfect list of convex pentagonal tiles. Incidentally, we found some
new convex pentagonal tilings in SUGIMOTO and OGAWA (2004).
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