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Abstract.  Let Ci (i = 1, ..., N) be the i-th open spherical cap of angular radius r and let Mi

be its center under the condition that none of the spherical caps contains the center of
another one in its interior. We consider the upper bound, rN (not the lower bound!) of r of
the case in which the whole spherical surface of a unit sphere is completely covered with
N congruent open spherical caps under the condition, sequentially for i = 2, ..., N – 1, that
Mi is set on the perimeter of Ci–1, and that each area of the set (  �ν=

−
1

1i Cν) � Ci becomes
maximum. In this study, for N = 2, ..., 9, we found out that the solutions of the above
covering and the solutions of Tammes problem were strictly correspondent.

1.  Introduction

“How must N congruent non-overlapping spherical caps be packed on the surface of
a unit sphere so that the angular diameter of spherical caps will be as great as possible?”
This packing problem is also called the Tammes problem and mathematically proved
solutions were known for N = 1, ..., 12, and 24 (SCHÜTTE and VAN DER WAERDEN, 1951;
DANZER, 1963; FEJES TÓTH, 1969, 1972; TESHIMA and OGAWA, 2000). On the other hand,
the problem “How must the covering of a unit sphere be formed by N congruent spherical
caps so that the angular radius of the spherical caps will be as small as possible?” is also
important. It can be considered that this problem is dual to the problem of packing of
Tammes (FEJES TÓTH, 1969). Among the problems of packing and covering on the
spherical surface, the Tammes problem is the most famous. However, the systematic
method of attaining these solutions has not been given.

In this paper, we would like to think of the covering in connection with the packing
problem. Therefore, we consider the covering of the spherical caps such that none of them
contains the center of another one in its interior. Such a set of centers is said to be a
Minkowski set (FEJES TÓTH, 1999). Hereafter, we call the condition of Minkowski set of
centers “Minkowski condition.” In addition, the covering which satisfies the Minkowski
condition is called “Minkowski covering.” If angular radii of spherical caps which cover
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the unit sphere under the Minkowski condition are concentrically reduced to half, the
resulting spherical caps do not overlap. Then, our purpose in this paper is to obtain the
upper bound (not the lower bound!) of angular radius of spherical caps which cover the unit
sphere under the Minkowski condition.

Suppose we have N congruent open spherical caps with angular radius r on the surface
S of the unit sphere and suppose that these spherical caps cover the whole spherical surface
without any gap and that the Minkowski covering is realized. Further we suppose the
spherical caps are put on S sequentially in the manner which is described just below. Let
Ci be the i-th open spherical cap and let Mi be its center (i = 1, ..., N). Our problem is to
calculate the upper bound of r for the sequential covering, such that N congruent open
spherical caps cover the whole spherical surface S under the condition that Mi is set on the
perimeter of Ci–1, and that each area of set (  �ν =

−
1

1i Cν) � Ci become maximum in sequence
for i = 2, ..., N – 1 (SUGIMOTO and TANEMURA, 2002, 2003, 2004). In this paper, we
calculate the upper bound of r for N = 2, ..., 9 theoretically; the case N = 1 is self-evident.
It is shown in this paper that the solutions of our problem are strictly correspondent to those
of the Tammes problem for N = 2, ..., 9. Further, it should be said that our method is a
systematic and a different approach to the Tammes problem from the works by SCHÜTTE

and VAN DER WAERDEN (1951), etc.
In Sec. 2, to solve our problem, we consider the properties of spherical caps under the

Minkowski condition. Then, we explain the procedure of our sequential covering and
define the upper bouds rN and rN−1. In Sec. 3 we give the solutions of our problem
successively for N = 2, ..., 9. Our conclusion is summarized in Sec. 4.

2.  Sequential Covering

Throughout this paper we assume that the center of the unit sphere is the origin O =
(0, 0, 0). Hereafter, we represent the surface of this unit sphere by the symbol S. In the
following, open spherical caps are simply written as spherical caps unless otherwise stated.
We define the geodesic arc between an arbitrary pair of points Ti and Tj on S as the inferior
arc of the great circle determined by Ti and Tj. Then the spherical distance between Ti and
Tj is defined by the length of geodesic arc of this pair of points.

2.1.  Relationship between the kissing number and the angular radius of spherical caps
First of all, we consider how many centers of congruent spherical caps can be placed

on the perimeter of a spherical cap under the Minkowski condition. This problem is related
to the kissing number of spherical caps. In the plane, one circle can contact simultaneously
with six other congruent circles. Then the kissing number is always six in the plane. On the
sphere, on the contrary, the kissing number of a circle (spherical cap) on the spherical
surface changes with its angular radius. Its maximum value is five as we will see below.
Here, we define a “half-cap” as the spherical cap whose angular radius is r/2 and which is
concentric with that of the original cap. When the kissing number is k, there can k half-caps
contact with the central half-cap and there is no space for another half-cap to enter. At this
instance, let us increase r until the peripheries of k half-caps contact with one another.
Then, if the centers of two half-caps in contact are joined by a geodesic arc, there arise k
spherical equilateral triangles of side-length r and of inner angle σ = 2π/k around the central
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half-cap. Thus by applying the spherical cosine theorem to one of the spherical equilateral
triangles, we have

r =
−





 ( )−cos

cos

cos
.1

1
1

σ
σ

By substituting σ = 2π/k into (1), we can calculate the upper bound value of r for a
given kissing number k (>1). Note that, for k = 1, it is clear that the upper bound value is
π. For k ≥ 6, Eq. (1) cannot have a solution. Namely, for k = 6, we get at once r = cos–11 = 0,
and for k > 6, we get the inequality cosσ/(1 – cosσ) > 1 indicating that no real value solution
exists for r. Therefore the maximum value of the kissing number of a spherical cap (circle
on the spherical surface) is five. As a result, we obtain the relationship between k and r as
is shown in Table 1 (SUGIMOTO and TANEMURA, 2001, 2002, 2003; SUGIMOTO, 2002). For
example, from Table 1, the kissing number k is four when the angular diameter of a
spherical cap is in the range (tan–12, π/2]. Note that inclusion of the upper bound in the
range of r in Table 1 is correspondent to the Minkowski condition.

Next, let us consider the packing with half-caps and the covering with corresponding
spherical caps (of angular radius r) where each half-cap is concentric with correspondent
spherical caps. Then it is observed that this covering satisfies the Minkowski condition;
namely, this is the Minkowski covering. For the covering that the centers of spherical caps
are chosen on the perimeters of other spherical caps under the Minkowski condition, we see
from Table 1 that, for example, four spherical caps can be placed on the perimeter of a
spherical cap when angular radius is in the range (tan–12, π/2]. We note that the discussions
of this subsection are valid for both of open and closed spherical caps.

2.2.  Overlapping area of congruent spherical caps
In order to solve our problem, we consider the overlapping area of congruent spherical

caps under the Minkowski condition.
Assume Ci and Cj be two congruent spherical caps, of angular radius r, which are

mutually overlapping under the Minkowski condition, and let Aij = A(Ci � Cj) be the
overlapping area where A(X) is the area of X. Further, when Ti and Tj are the points on S,
let ds(Ti, Tj) denote the spherical distance between points Ti and Tj. Especially, we denote
sij = ds(Mi, Mj) as the spherical distance between centers of Ci and Cj (r ≤ sij ≤ 2r). Then let

Table 1.  Relationship between k and r.

k Range of r

1 (2π /3, π]

2 (π – cos–1(1/3), 2π /3]

3 (π /2, π – cos–1(1/3)]

4 (tan–12, π /2]

5 (0, tan–12]
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hij be the spherical distance between cross points of perimeters of Ci and Cj. By using the
spherical cosine formula about a spherical right triangle, we have

h
r

s
ij

ij

= ( )
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Then the overlapping area of Ci and Cj is given by
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For the detailed derivation of (2), see Appendix A.2. It is obvious that Aij is a continuous
function of r and sij (SUGIMOTO and TANEMURA, 2001, 2002; SUGIMOTO, 2002). Then, we
get the following Lemma (SUGIMOTO and TANEMURA, 2004).

Lemma.  If the range of angular radius r is 0 < r ≤ 2π/3, then the overlapping area Aij of
the set Ci � Cj is a monotone decreasing function of sij = ds(Mi, Mj) when r is fixed. Then,
Aij is maximum when sij = r.

Proof.  At first, we show that the range of r should be 0 < r ≤ 2π/3 in order Aij to be a function
of sij. Under the Minkowski condition, if 2π/3 < r ≤ π, the area of the set Ci � Cj is always
constant 4π cosr and, if r > π, two spherical caps cannot be put on the spherical surface S.
Therefore, the range of angular radius is limited to 0 < r ≤ 2π/3. Let G(a) and G(b) be the
set Ci � Cj for sij = a and b (a < b), respectively. We assume that Ci and Cj contact with each
other first. Let e be the geodesic arc between fixed centers of these spherical caps. Next,
let Ci be fixed and let us move Cj by moving Mj along e toward Mi. Then, it is obvious that
G(a) � G(b) holds during this movement. Therefore, for r fixed, Aij is a monotone
decreasing function of sij. Thus, Aij is maximum when sij = r. �

On the contrary, Aij is a monotone increasing function of hij when r is fixed. Further, when
sij = r, we find that the area of set Ci � Cj is minimum.

Let N be the number of spherical caps when the whole spherical surface is completely
covered. And, let ∂Ci be the perimeter of Ci (i = 1, ..., N). Then we define:

    
W W C A W C i N W Ci i i

M C
i i

i i

= ( )







= − = ( )−
∈∂

−
−
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1
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In other words, Wi is the union of Wi–1 and Ci satisfying the condition that the area
A(Wi–1 � Ci) is maximum with the restriction Mi ∈ ∂Ci–1 (SUGIMOTO and TANEMURA,
2002, 2003). Hereafter, we call that “  �ν =1

i Cν is in an extreme state” when the set of
spherical caps C1, ..., Ci possesses the property (3). We are always necessary to examine
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whether �ν =1
i Cν is in an extreme state in the sequential covering procedure of our problem

mentioned in Sec. 1. For this purpose, we calculate the area A(Wi–1 � Ci) by using (2) and
the area formula of spherical triangle. Here, we consider W2 defined in (3). From Lemma,
the area A(C1 � C2) will become maximum when M2, the center of C2, is put on ∂C1.
Therefore, for i = 2, the set W2 =   �ν =1

2 Cν is in an extreme state when s12 = r for
0 < r ≤ 2π/3 as shown in Fig. 1(a).

Next, we consider W3. In order to make the situation that   �ν =1
3 Cν is in an extreme state

(A(W2 � C3) is maximum with the restriction M3 ∈ ∂C2), from the definition of (3), we can
assume N ≥ 4. Therefore, the whole spherical surface must be covered by four or more
spherical caps under the Minkowski condition. Then, we present the following theorem
(SUGIMOTO and TANEMURA, 2003).

Theorem 1.  If the range of angular radius r is 0 < r ≤ π – cos–1(1/3), then   �ν =1
3 Cν is in an

extreme state when s12 = s13 = s23 = r.

Proof.  We first examine the range of r. From the consideration of kissing number in the
foregoing Subsection, four or more spherical caps cannot be placed on S under the
Minkowski condition when r > π – cos–1(1/3). Therefore, the range of r should be
0 < r ≤ π – cos–1(1/3).
From Lemma,   �ν =1

2 Cν is in an extreme state when s12 = r (see Fig. 1(a)). Namely, at this

time,   �ν =1
2 Cν is identical to W2. Then, we define T1 and T2 as the two cross points of

perimeters ∂C1 and ∂C2. Now, from (3), the center M3 is set on the perimeter of C2 outside

Fig. 1.  The sketch of W2 and W2 � C3.
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of C1 and we need to consider the area A(W2 � C3). At this time, s23 = r. Hence, from
Lemma, the area A23 = A(C2 � C3) is always fixed and maximum for any M3 ∈ ∂C2. Here,
as shown in Fig. 1(b), let T3 be the fixed point on ∂C2 such that ds(T1, T3) = r and that it is
outside C1. First, we put M3 at T3. Next, let us move M3 along ∂C2 toward T1. Then, as shown
in Fig. 1(c), we see the relation A(W2 � C3) = A((C1 � C3) � (C2)c) + A23 holds. Therefore,
under the condition M3 ∈ ∂C2, A(W2 � C3) is maximum when A((C1 � C3) � (C2)c) attains
its maximum. Then, we seek for the position of M3 when A((C1 � C3) � (C2)c) is maximum.
Let G(a) and G(b) be the set (C1 � C3) � (C2)c for s13 = a and b (a < b), respectively. Then,
it is obvious that G(a) � G(b) holds. Therefore, for r fixed, A((C1 �C3) �(C2)c) is a
monotone decreasing function of s13. Hence, A((C1�C3)�(C2)c) is maximum when M3 is
put at T1. Therefore, A(W2�C3) attains its maximum when M3 is selected on T1. Then,
s13 = r holds. Thus, as shown in Fig. 1(d),   �ν =1

3 Cν is in an extreme state when s12 = s13 =
s23 = r for 0 < r ≤ π – cos–1(1/3). �

2.3.  Procedure of sequential covering
As mentioned in Sec. 1, our problem is to calculate the upper bound of r for the

sequential covering, such that N congruent open spherical caps cover the whole spherical
surface under the condition that Mi is set on the perimeter ∂Ci–1, and that each area
A(Wi–1 � Ci) becomes maximum in sequence for i = 2, ..., N – 1. Note that, although N spherical
caps are needed in our problem, N – 1 spherical caps are used in the sequential covering
since we want to make the situation that   �ν =

−
1
1N Cν is in an extreme state. First, before

beginning covering, the angular radius r of spherical caps is chosen sufficiently small so
that �ν =

−
1
1N Cν cannot cover the whole spherical surface in the Minkowski covering. Note

that, in the result which will be obtained in the procedure below, the set WN–1 does not cover
the whole spherical surface. Algorithmically, the procedure of sequential covering is the
followings (SUGIMOTO and TANEMURA, 2003):
STEP 1: The center M1 of the first spherical cap C1 is put at (x, y, z) = (0, 0, –1). Then, from

(3), W1 = C1 holds.
STEP 2: The center M2 of C2 is put at a certain point on the perimeter ∂C1. As a result,

  �ν =1
2 Cν is in an extreme state (A(W1 �C2) is maximum with the restriction M2 ∈ ∂C1)

since s12 = r. If (N – 1) ≥ 3, go to the next step; otherwise the procedure ends.
STEP 3: The center M3 of C3 is put on one of the cross points of ∂C1 and ∂C2. Then   �ν =1

3 Cν
is in an extreme state since s12 = s13 = s23 = r. If (N – 1) ≥ 4, put i = 4 and go to the next
step; otherwise the procedure ends.

STEP 4: First, the center Mi of Ci is placed at a certain point on the acceptable part of
∂Ci–1 which is outside the other spherical caps. Next, move Mi among the acceptable points
on ∂Ci–1 and compute A(Wi–1 � Ci) for respective points of Mi. Then, Mi is fixed at the
position where A(Wi–1 � Ci) attains its maximum (i.e. the set Wi is formed on S). Go
to STEP 5.

STEP 5: If i = N – 1, the procedure ends; otherwise put i ← i + 1 and go to STEP 4.

Therefore, our sequential covering satisfies the condition that, sequentially for
i = 2, ..., N –1, each A(Wi–1 � Ci) is maximum with the restriction Mi ∈ ∂Ci–1 (  �ν =1

i Cν is
in an extreme state).
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2.4.  Upper bounds rN and rN−1
We define rN as the upper bound of r which is mentioned at the top of Subsec. 2.3. Next,

we define another upper bound of r, rN−1, such that the set   �ν =
−
1
1N Cν which contains WN–2

cannot cover S under the Minkowski condition. Then rN−1 should be equal to the spherical
distance of the largest interval in the uncovered region (WN–2)c of S. It is because, when the
angular radius r is equal to rN−1, the set   �ν =

−
1
1N Cν which contains WN–2 can cover S except

for a finite number of points or a line segment under our sequential covering. Therefore,

  �ν =
−
1
1N Cν is in an extreme state if and only if at least one endpoint of the interval, which has

the above mentioned spherical distance rN−1, comes on the perimeter ∂CN–2. Further, when
there are two or more uncovered points, the spherical distance of any pair of these
uncovered points is less or equal to rN−1 since the largest interval is assumed to be rN−1.
Then, we can put the center MN of CN at one of the uncoverd points. At this moment, we
see that   �ν =1

N Cν which contains WN–1 covers S without any gap. Then, we notice the fact
that rN is equal to rN−1.

Therefore, for our problem, it is necessary to know the spherical distance of the largest
interval in the uncovered region (WN–2)c. In our cases in Sec. 3, it becomes important to
consider triangles or quadrangles as the shape of (WN–2)c in the final steps of sequential
covering. For this purpose, we investigate the farthest pair of points in spherical triangle
and quadrangle so that it is useful for later considerations.

First, we consider the spherical triangle. Let T1, T2, and T3 be the points on S and let
the spherical triangle T1T2T3 be such that the side T1T2 of the triangle T1T2T3 is an inferior
arc of the great circle determined by T1 and T2: namely the side T1T2 is the geodesic arc and
satisfies 0 < ds(T1, T2) ≤ π. Next, we define the point H as the middle point of the geodesic
arc T1T2. Then, we get the position of H as follows:

H
T T

T T
= +

( )( )( )−
1 2
1

1 22 2cos cos ,

where a bold symbols H, T1, and T2 are unit vectors from the origin O to the points H, T1,
and T2 on the unit sphere, respectively, and where (T1, T2) is the inner product of vectors
T1 and T2. Then, we get the following theorem.

Theorem 2.  If the spherical triangle T1T2T3 satisfies the condition π/2 ≥ ds(T1, H) =
ds(H, T2) = ds(T1, T2)/2 ≥ ds(H, T3) > 0, then the farthest pair of points inside the spherical
triangle T1T2T3 is the pair of T1 and T2.

Proof.  Let C′ be the closed spherical cap with its center at H and with its angular radius
as ds(T1, H). From the condition that ds(T1, H) ≥ ds(H, T3), T3 is inside C′. In order to prove
Theorem 2, we need to consider three cases: (I) ds(T1, H) = ds(H, T3) = π/2 and T3 ∈ ∂C′;
(II) ds(T1, H) = ds(H, T3) < π/2 and T3 ∈ ∂C′; (III) ds(T1, H) ≤ π/2 and T3 ∉ ∂C′. First, for
the case (I), let T1, T2, and H be (0, 1, 0), (0, –1, 0) and (0, 0, 1), respectively. Namely, the
geodesic arc T1T2 is the half of the great circle. Therefore, the perimeter of C′ is the equator
of unit sphere. Then, all the sides of spherical triangle T1T2T3 are the geodesic arcs.
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Furthermore, the spherical triangle T1T2T3 is formed with two sectors T1HT3 and T2T3H,
and is contained in C′. Therefore, it is clear that the spherical distance ds(T1, T2) = π is the
largest distance. Next, for the case (II), ds(T1, T3) is shorter than the length of arc T1T3 of
perimeter ∂C′ and the geodesic arc T1T3 is inside of C′. Therefore, the spherical triangle
T1HT3 is contained in the sector T1HT3. Hence, it is entirely contained in C′. Similarly, we
find that the spherical triangle T2T3H is contained in C′. Thus, the closed spherical cap C′
entirely contains the spherical triangle T1T2T3. The proof for the case (III) is the same
procedure as in the case (II). Therefore, in the cases (II) and (III), the spherical distance
ds(T1, T2) is the largest distance. Thus, the farthest pair of points in spherical triangle T1T2T3
is the pair of T1 and T2.  �

Note that if the condition of Theorem 2 is not satisfied, the claim of Theorem 2 does
not hold. For example, when the spherical triangle is an equilateral triangle of side lengths
between π/2 and π, its height is larger than the sides: namely the farthest pair of points in
spherical equilateral triangle is not the pairs of spherical triangular vertices.

Next, we consider the case of quadrangle. Let us given the spherical triangle T1T2T3
which satisfies the condition of Theorem 2. Then, we add the point T4 on S to the opposite
side of T3 against the great circle which passes T1 and T2. By joining T4 with T1 and T2 by
the geodesic arcs, respectively, we make the spherical quadrangle T1T4T2T3 that is formed
with two spherical triangles T1T2T3 and T1T4T2. Then, we have the following Corollary
from Theorem 2.

Corollary.  If the spherical quadrangle T1T4T2T3 satisfies the following conditions
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then the farthest pair of points in the spherical quadrangle T1T4T2T3 is the pair of T1 and
T2.

Proof.  Let C′ be the closed spherical cap whose center is H and whose angular radius is
ds(T1, H). From Theorem 2, the spherical triangle T1T2T3 is entirely contained in C′ and its
farthest pair is the pair of T1 and T2. Similarly, the spherical triangle T1T4T2 is contained
in C′ and its farthest pair is the pair of T1 and T2. Therefore, the spherical quadrangle
T1T4T2T3 is entirely contained in C′ whose angular diameter is determined by ds(T1, T2).
Thus, the pair of T1 and T2 is the farthest pair of points in spherical quadrangle
T1T4T2T3. �

Now, we consider the meanings of the upper bounds rN and rN−1 in an illustrative
example. Figure 2 shows the distinction between two upper bounds rN and rN−1. In Fig.
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2(a), the shaded region is the covered region WN–2 and the white region is the uncovered
region (WN–2)c. At this time, the shape of (WN–2)c is the quadrangle T1T4T2T3 on S. We note
that the sides of uncovered region (WN–2)c are not geodesic arcs but are perimeters of
spherical caps. Here, we suppose that the spherical quadrilateral T1T4T2T3 (the quadrilateral
enclosed by dotted-and-dashed segments in Fig. 2(a)) satisfies the condition of Corollary
of Theorem 2. Then, it is obvious that the quadrangle T1T4T2T3 (the quadrangle enclosed
by solid segments in Fig. 2(a)) on S is inside the spherical quadrilateral T1T4T2T3.
Therefore, from Corollary of Theorem 2, we find that the pair of T1 and T2 is the farthest
pair of points in the spherical quadrilateral T1T4T2T3 and in the quadrangle T1T4T2T3 on S.

Fig. 2.  Upper bounds rN and rN−1 .
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Namely, the spherical distance of the largest interval in (WN–2)c is ds(T1, T2). Then, when
the radii r of N –1 spherical caps are all equal to ds(T1, T2) and the center MN–1 is put on T1

or T2, the set   �ν =
−
1
1N Cν which contains WN–2 can cover S except for a point (T2 or T1).

Therefore, the upper bound, rN−1, of r such that the set   �ν =
−
1
1N Cν which contains WN–2 cannot

cover S under the Minkowski condition is ds(T1, T2). At this time, as shown in Fig. 2(b), if
T2 ∈ ∂CN–2 is selected as MN–1, the set   �ν =

−
1
1N Cν is in an extreme state where T1 is the unique

uncovered point. Therefore, when MN is put at T1 ∈ ∂CN–1, the set   �ν =1
N Cν which contains

WN–1 covers S without any gap. Thus, as shown in Fig. 2(c), our upper bound rN is equal to
ds(T1, T2). Namely, in Fig. 2, we see the fact that rN = rN−1  = ds(T1, T2).

Here, we note the advantage of using the upper bound rN−1. The value of rN−1 is easier
to calculate than rN, since it is better to examine the extreme situation where the spherical
surface S cannot be covered by N – 1 spherical caps than the situation where S is covered
by N caps. Then, at the last stage of the process of covering, we only need to observe the
situation where a few uncovered regions remain since our covering is sequential. Moreover,
the covering of our problem is finished in fact when N – 1 spherical caps cover S except for
a finite number of points or a line segment since open spherical caps are considered. In such
a case, as shown in the cases below, the position of the center of the N-th spherical cap is
almost unique. Although rN−1 and rN are not necessarily coincident, the value of rN−1 will
give a strong candidate for rN.

3.  Results

3.1.  N = 2, 3, 4, 5 and 6
For cases of N = 2, ..., 6, we find that rN is equal to the upper bound of the range of r

for k in Table 1.
For N = 2, r2 (i.e. rN for N = 2) is equal to π. It is because that the radius of the first

spherical cap C1 should be equal to r1 = π  in order C1 to cover the whole S except for a point.
From the STEP 1 as described in Subsec. 2.3, the center M1 of C1 is put at the south pole
(0, 0, –1). In this case, the north pole (0, 0, 1) is open for r1 = π. Then it is obvious that we
can put M2, the center of the second spherical cap C2, at the north pole. At this time, S is
covered without any gap by C1 and C2 which satisfy the Minkowski condition. Thus we see
r2 = r1 = π. We note that this value π  is the upper bound of the range of r for k = 1 as shown
in Table 1.

For N = 3, r3 should be equal to the upper bound of the range of r for k = 2. It is because
that, when r = 2π/3, the set   �ν =1

2 Cν under the condition M2 ∈ ∂C1 can cover S except for
a point. First, let M1 be the south pole as described above. Then, if M2 is put at the point
(sin(2π/3), 0, –cos(2π/3)) = ( 3 /2, 0, 1/2) on ∂C1, the unique uncovered point P of S will
be (– 3 /2, 0, 1/2). Then,   �ν =1

2 Cν is in an extreme state. Therefore, we get r2  = 2π/3, and
we can put the center M3 of C3 at P. At this time,   �ν =1

3 Cν which contains W2 covers the
whole of S under the Minkowski condition. It is obvious that the position of centers is the
trisection point of a great circle. Thus the correspondent angular radius r3 is equal to 2π/3.

For N = 4, r4 should be equal to the upper bound of the range of r for k = 3. The reason
is the following. First, we can assume that M3 is put on one of the cross points of perimeters
∂C1 and ∂C2 under the condition M2 ∈ ∂C1. It is because that, from Theorem 1 in Subsec.
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2.2,   �ν =1
3 Cν is in an extreme state when s12 = s13 = s23 = r. If r is equal to the spherical

distance between the cross points of ∂C1 and ∂C2, the spherical surface S except for a point
is covered by the set W3. As before, let M1 be the south pole and let M2 be at (sinr, 0, –cosr).
At this time, let us assume that the angular radius r is equal to the upper bound of the range
r for k = 3 in Table 1. Thus, when r = π – cos–1(1/3), M3 is selected as one of the trisection
point of ∂C1 and let it be ((–1/2)sinr, (– 3 /2)sinr, –cosr) = (– 2 /3, – 2 / 3 , 1/3). Then,
it is easy to see that the point P = ((–1/2)sinr, ( 3 /2)sinr, –cosr) = (– 2 /3, 2 / 3 , 1/3)
is the unique uncovered point on S. We note, at the same time, that the coordinates of M2
turns out to be (2 2 /3, 0, 1/3). Therefore, we get r3  = π – cos–1(1/3), and we can put M4

on that point P. As a result, the set   �ν =1
4 Cν which contains W3 can cover the whole of S when

r = r3  and we get finally r4 = π – cos–1(1/3). Then, we find that the position of centers of
these four spherical caps is in accord with the vertices of regular tetrahedron.

For N = 5, before deriving r5, r4  = π/2 is shown first. When r = π/2, from Theorem 1,
the centers M1, M2, and M3 are put, for example, at (0, 0, –1), (1, 0, 0), and (0, –1, 0),
respectively, in order for   �ν =1

3 Cν to be in an extreme state. Then, the uncovered region
(W3)c is the spherical equilateral triangle of side-length π/2 and vertices (0, 0, 1), (–1, 0, 0),
and (0, 1, 0). Therefore, from the discussion in Subsec. 2.4, we find that the largest spherical
distance in (W3)c is equal to π/2; namely r4  = π/2. Next, when M4 is put on the point
(0, 0, 1) ∈ ∂C3 or (–1, 0, 0) ∈ ∂C3 (in this paper, we choose (–1, 0, 0)), the set   �ν =1

4 Cν is
in an extreme state. As a result, the set W4 can cover S except for a line segment which is
an inferior great circle connecting (0, 1, 0) and (0, 0, 1) and whose length is π/2. Therefore,
when M5 is put at any point on this line segment except for points (0, 1, 0) and (0, 0, 1), we
find that   �ν =1

5 Cν covers S without gap under the Minkowski condition. Thus, r5 = r4  =
π/2. Namely, r5 is equal to the upper bound of the range of r for k = 4.

For N = 6, we can assume that r6 is equal to the result of the case N = 5. First, similar
to the case N = 5, we put the centers of C1, C2, C3, and C4 of radius r = π/2 at (0, 0, –1),
(1, 0, 0), (0, –1, 0), and (–1, 0, 0), respectively. If we put M5 on (0, 0, 1) or (0, 1, 0) (in the
following, we assume (0, 1, 0) is chosen as M5), the set   �ν =1

5 Cν is in an extreme state and
the spherical surface S except for a point, namely the point (0, 0, 1), can be covered by the
set W5. As a result, the set   �ν =1

6 Cν containing W5 covers the whole of S when we put M6

on (0, 0 1). Thus, our assumption r5 = r6 = π/2 is confirmed. Then, we find that the position
of centers of these spherical caps for N = 6 is in accord with the vertices of regular
octahedron. Therefore, if all spherical caps of our covering for N = 6 are replaced by half-
caps (the spherical cap whose angular radius is r/2 and which is concentric with that of the
original cap), all of those half-caps contact other four half-caps and there is no space for
those half-caps to move.

3.2.  N = 7
From the considerations for the cases N ≤ 6 and Subsec. 2.1, we can assume that, for

N = 7, the angular radius r should satisfy the inequalities tan–12 < r < π/2. The reason is the
following. First, the center M1 of the first spherical cap C1 is set at the south pole
(0, 0, –1) as before. Now, we remind the cases of N ≤ 6 in Subsec. 3.1, in order to investigate
the position of centers of spherical caps for N = 7. For N = 2, M2 is placed on the perimeter
∂C1. For N = 3, M2 and M3 are both on ∂C1. For N = 4, the centers M2, M3, and M4, are placed
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on ∂C1. For N = 5 and 6, there are four centers of other spherical caps on ∂C1. Then, from
these facts and from Subsec. 2.1, we can consider two cases for N = 7 as follows: four
centers M2, M3, M4, and M5 are on ∂C1; and five centers M2, M3, M4, M5, and M6 are on ∂C1.
For N = 7, we find that the second case is excluded because of the following reason. When
five centers M2, M3, M4, M5, and M6 are placed on ∂C1 according to our sequential covering,
the range of angular radius r must be 0 < r ≤ tan–12 from the consideration in Subsec. 2.1.
Here, we consider the case that r is equal to tan–12 ≈ 1.10715. Then, it is obvious that the
spherical distance between M1: (0, 0, –1) and any point of the set which is covered by our
six spherical caps is smaller than 2tan–12, while the length of longitude line joining south
and north poles is larger than 2tan–12. Thus, the union of our six spherical caps would leave
a big open area (whose size is at least comparable to the area of spherical cap of angular
radius π – 2tan–12) near the north pole of the unit sphere. Furthermore, the open area near
the north pole would become still bigger for 0 < r < tan–12. Hence, the set   �ν =1

6 Cν cannot
cover S at all. Thus, we should exclude the second case. Therefore, we have to consider the
first case that four centers M2, M3, M4, and M5 of spherical caps are placed on ∂C1. Then,
below, we investigate the range of r under this condition. From the consideration in Subsec.
2.1, when r ≤ π/2, it is possible to put four spherical caps on the perimeter of a spherical
cap. Especially, when the range of r is (tan–12, π/2], four spherical caps can be placed on
the perimeter of a spherical cap and, at the same time, five spherical caps cannot be placed
on the perimeter of a spherical cap. Further, from the setup of our problem, we want to make
r the biggest possible. Therefore, we can assume that r is larger than tan–12. On the other
hand, if r ≥ π/2, we cannot cover S by seven spherical caps without breaking the Minkowski
condition due to the results of cases N ≤ 6. Thus, r should be in the range
tan–12 < r < π/2. We note that the equality sign does not enter in these inequalities.

Let (x, y, z) be the coordinates of cross points where the perimeters of Ca (the
coordinates of the center: (a1, a2, a3)) and Cb (the coordinates of the center: (b1, b2, b3))
intersect. By solving the simultaneous equations

 cos ,
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a x a y a z r
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+ + =
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we will have the coordinates of the cross points. Thus, in the case where the centers of two
spherical caps are put respectively at (0, 0, –1) and (sinr, 0, –cosr), we get
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 sin cos cos ,
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Let the points K1 = (x1, y1, z1) and K2 = (x2, y2, z2) be the solutions of simultaneous
equation (5). Solving (5), we obtain
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Here, the center M1 of C1 is set at the south pole (0, 0, –1) as already mentioned. We
put the centers M2 and M3 of C2 and C3 each, at K1 and (sinr, 0, –cosr), respectively. Note
that K1 and K2 are the points where the perimeters of C3 and C1 intersect. We also note here
that the locations of centers of the second and the third spherical caps defined as above are
different from the cases N = 4, 5, 6 because of the convenience of our computation. We will
use this convention for all cases of N ≥ 7 hereafter. Then, taking into account Theorem 1

Fig. 3.  The curve of A(W3 � C4) when M4 is moved on the arc K4K2 of C3. Here, the arc K4K2 is divided into
100 equal intervals and the area A(W3 � C4) is calculated on 101 end points of the intervals. Note that the
curve of r � 1.10715 corresponds to the case of r = tan–12. The values of r of other curves are described in
the text.

Fig. 4.  The curve of A((W4 �C5)c) when M5 is moved on the arc K6K5 of C4. The similar computation method
as in Fig. 3 is taken. See the legend in Fig. 3.
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in Subsec. 2.2,   �ν =1
3 Cν is in an extreme state. At this time, similarly, we calculate the points

where the perimeters of C2 and C1 intersect. Among these cross points, let K3 = (x3, y3, z3)
be the point which is outside C3. Let K4 = (x4, y4, z4) be one of the cross points between ∂C2
and ∂C3 and let it not be the south pole (0, 0, –1). The explicit expressions of coordinates
of cross points K3 and K4 are shown in Appendix A.1.

Let us place the center M4 at K4 and move it to K2 along the arc K4K2 of C3. We note
that, during this movement, the distance s43 between M4 and M3 is equal to the angular
radius r and the overlapping area A43 of C4 and C3 is invariant while the area A(W3 � C4)
is variable. Then, we want to know the position of M4 where the area A(W3 �C4) is
maximum. Therefore, we calculate the area A(W3 � C4) against the moving point M4
numerically for several fixed values of r among tan–12 ≤ r < π/2. In order to use the result
later, the computation for r = tan–12 is also performed. The results are shown in Fig. 3. In
this figure, the horizontal axis is the position of M4 on the arc K4K2 of C3 and the vertical
axis is the area A(W3 � C4). In this computation, the arc K4K2 is divided into 100 equal
intervals and the area A(W3 � C4) is calculated on 101 end points of the intervals. Hereafter,
the similar computations are performed for determination of centers of spherical caps (see
Figs. 4, 7, and 10). As a result, for the four values of r in Fig. 3, we find that this curve of
A(W3 �C4) is symmetrical at the center of the arc K4K2 (it is evident from the spherical
symmetry) and A(W3 � C4) is maximum at both ends. The same fact as above would hold
for every values of r in the range tan–12 ≤ r < π/2. Therefore, we expect that   �ν =1

4 Cν is in
an extreme state if and only if M4 is put at K2 or K4 for tan–12 ≤ r < π/2. To make sure, we
shall check that these points K2 and K4 satisfy the condition that   �ν =1

4 Cν is in an extreme
state after obtaining the exact values of the angular radius r at the last paragraph in this
subsection. At the moment, we choose M4 on the point K2. Then, let K5 = (x5, y5, z5) be one
of the cross points of perimeters ∂C4 and ∂C1, and let it be outside C3. Further, let K6 =
(x6, y6, z6) be one of the cross points of ∂C4 and ∂C3, and let it not be the south pole (0, 0, –1).
The explicit expressions of cross points K5 and K6 are given in Appendix A.1.

Next, the center M5 is put at a certain point on the arc K6K5 of C4. Then, we need to
calculate the area A(W4 � C5) when M5 is moved on the arc K6K5 of C4. However, in order
to simplify calculation, we pay attention to the area A((W4 �C5)c). It is because, for i ≥ 2,
we find the relation that the area A(Wi–1 � Ci) is maximum with the restriction

Fig. 5.  The kite K8K4K6K7 on unit sphere.
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Mi ∈ ∂Ci–1 (  �ν =1
i Cν is in an extreme state) is the same as that the area A((Wi–1 � Ci)

c) is
maximum with the restriction Mi ∈ ∂Ci–1. Therefore, for i = 5, we calculate A((W4 � C5)c)
against the moving point M5 numerically for several fixed values of r among tan–12 ≤ r <
π/2. Here, the computation is performed as in the determination of M4. Figure 4 shows the
results. In this figure, the horizontal axis is the position of M5 on the arc K6K5 of C4 and the
vertical axis is the area A((W4 � C5)c). As a result, for the four values of r in Fig. 4, the curve
of A((W4 �C5)c) is symmetrical at the center of the arc K6K5 (it is evident from the spherical
symmetry) and A((W4 �C5)c) is maximum when M5 is placed on K6 or K5. The same fact
as above would hold for every values of r in the range tan–12 ≤ r < π/2. Therefore, we expect
that   �ν =1

5 Cν is in an extreme state if and only if M5 is put at K5 or K6 for tan–12 ≤ r < π/2.
To make sure, we shall check whether the points K5 and K6 are such points after obtaining
the exact values of the angular radius r at the last paragraph in this subsection like the case
of M4. Here, we choose M5 on the point K5. Then, let K7 = (x7, y7, z7) be one of the cross
points of the perimeters ∂C5 and ∂C4, and let it be outside of C1. Similarly, let K8 = (x8, y8,
z8) be one of the cross points of ∂C5 and ∂C2, and let it be outside of C1. The exact
coordinates of K7 and K8 are also given in Appendix A.1.

At the time when C5 is put on the sphere, the shape of the uncovered region (W5)c

becomes a kite on the unit sphere (see Fig. 5). We note that the sides of the kite K8K4K6K7
are not geodesic arcs but are perimeters of spherical caps. Then, we see that there are four
centers M2, M3, M4, and M5 on the perimeter ∂C1.

From the configuration of the vertices K8, K4, K6 and K7 of the kite K8K4K6K7, for the
range tan–12 ≤ r < π/2, we find that there hold always the following relations of the spherical
distance between each vertices.
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Note that, as defined in Subsec. 2.2, ds(Ki, Kj) is the spherical distance between points
Ki = (xi, yi, zi) and Kj = (xj, yj, zj); namely

d K K x x y y z zs i j i j i j i j( , ) cos .= ⋅ + ⋅ + ⋅( ) ( )−1 9

Refer to Appendix A.1 for the explicit coordinates of K4, K6, K7, and K8. We produced the
relations (8) by using mathematical software. Especially four inequalities in (8) are
obtained numerically.

So far, we have arranged five spherical caps. Next, let us consider the sixth and seventh
spherical caps. As mentioned in Subsec. 2.4, if we take the angular radius of spherical caps
to be equal to the largest spherical distance in the kite K8K4K6K7, the sixth spherical cap C6



212 T. SUGIMOTO and M. TANEMURA

can cover the region except for a point in the kite under the Minkowski condition.
Therefore, we find that r6  is the largest spherical distance in the kite. It is obvious that the
kite K8K4K6K7 on the sphere is inside the spherical quadrilateral K8K4K6K7 for fixed
vertices K8, K4, K6, and K7 (see Fig. 5). From (8) and the coordinates of K8, K4, K6, and K7
in Appendix A.1, we find numerically that four vertices of the spherical quadrilateral
K8K4K6K7 satisfies the relations ds(K6, K8) > ds(K4, K7), and π/2 ≥ ds(K6, H) = ds(H, K8) =
ds(K6, K8)/2 > ds(H, K4) = ds(H, K7) > 0 for tan–12 ≤ r < π/2. Note that H is the middle point
of the geodesic arc K6K8. Therefore, from Corollary of Theorem 2, the farthest pair of
points in the spherical quadrilateral K8K4K6K7 is the pair of K6 and K8; namely ds (K6, K8)
is the largest spherical distance in the kite K8K4K6K7 and is equal to r6 . Then, from (9) and
the coordinates of K6 and K8 in Appendix A.1, we have

r d K K
r r r

r r rs= ( ) = − − +
+ − +
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In addition, we note K8 ∈ ∂C5. Thus,   �ν =1
6 Cν is in an extreme state (the set   �ν =1

6 Cν covers
S except for the point K6) if and only if M6 is put on the point K8. At this time, K6 is the unique
uncovered point. Equation (10) is solved against r by using mathematical software. As a
result, the value of the upper bound for N = 7 is obtained
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Therefore, when M6 and M7 are put at K8 and K6, respectively, then   �ν =1
7 Cν which

contains W6 covers the whole of S (see Fig. 6(a)). Namely, our sequential covering for
N = 7 is completed.

Here, we check whether the position of points K2 and K5 for M4 and M5 satisfy the
condition that   �ν =1

4 Cν and   �ν =1
5 Cν are in an extreme state, respectively. For that purpose,

Fig. 6.  (a) Our sequential covering for N = 7. (b) Our solution of Tammes problem for N = 7. Both viewpoints
are (0, 0, 10). In this example, the coordinates of the centers are respectively (0, 0, –1), (0.16977, –0.96282,
–0.21014), (0.97767, 0, –0.21014), (0.16977, 0.96282, –0.21014), (–0.91871, 0.33438, –0.21014), (–0.55588,
–0.46644, 0.68806), and (0.39850, 0.33438, 0.85404).
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when r is equal to the value of (11), we examine the position where the area A(Wi–1 � Ci)
is maximum with the restriction Mi ∈ ∂Ci–1 (i = 4 and 5). First, about M4, we calculate
numerically the area A(W3 �  C4) against the moving point M4 for r  =
cos–1(1 – (4/ 3 )cos(7π/18)). As mentioned above, we checked numerically that
A(W3 � C4) is maximum with the restriction M4 ∈ ∂C3 (  �ν =1

4 Cν is in an extreme) if and only
if M4 is put at K2 or K4 for r = cos–1(1 – (4/ 3 )cos(7π/18)). The fact is indicated by the curve
of r � 1.10715 corresponding to r = cos–1(1 – (4/ 3 )cos (7π/18)) in Fig. 3. Next, about M5,
we use the fact that A(W4 � C5) is maximum with the restriction M5 ∈ ∂C4 is the same as
that A((W4 �C5)c) is maximum with the restriction M5 ∈ ∂C4. As mentioned above, we
checked numerically that A((W4 � C5)c) is maximum with the restriction M5 ∈ ∂C4 (  �ν =1

5 Cν
is in an extreme) if and only if M5 is put at K5 or K6 for r = cos–1(1 – (4/ 3 )cos (7π/18)).
The result is graphically presented by the curve of r � 1.10715 corresponding to
r = cos–1(1 – (4/ 3 )cos (7π/18)) in Fig. 4. Thus, our choice for M4 and M5 is justified.

3.3.  N = 8
It is expected that the solution r8 for N = 8 should not be larger than r7. Then, we assume

r ≤ r7. Further, at the moment, we assume tan–12 ≤ r. If our answer for N = 8 is not obtained
by this assumption tan–12 ≤ r, we will consider the range of r < tan–12 next. First, as in the
case of N = 7, the centers M1, M2, and M3 are placed at (0, 0, –1), K1, and (sinr, 0, –cosr),
respectively. Since, from Theorem 1 in Subsec. 2.2, the set   �ν =1

3 Cν is in an extreme state
when the centers M1, M2, and M3 satisfy the relations s12 = s13 = s23 = r. Next, from the
considerations for determinations of M4 and M5 in Subsec. 3.2, we can assume that the
allocation of points K2 and K5 for M4 and M5 respectively satisfy the condition that   �ν =1

4 Cν
and Cν each are in an extreme state. To make sure, we shall check that K2 and K5 are such
points after obtaining the exact values of r8. Therefore, we use the same positions of the first
five spherical caps for the case N = 7. When the fifth spherical cap C5 is put on the sphere,
in the same way as the foregoing Subsection, a quadrilateral kite K8K4K6K7 on the sphere
might be formed as the uncovered region. Hence, the relations (8) hold.

Fig. 7.  The change of A((W5 �C6)c) when M6 is moved on the arc K7K8 of C5. The similar computation method
as in Fig. 3 is taken. See the legend in Fig. 3.
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Next, we search the position of M6 which satisfies the condition that the area
A(W5 � C6) is maximum with the restriction M6 ∈ ∂C5 (  �ν =1

6 Cν is in an extreme state).
From the restriction M6 ∈ ∂C5, M6 is put at a certain point on the arc K7K8 of C5 and, during
M6 is moved on the arc K7K8 of C5, the area A(W5 � C6) is calculated. At this time, in order
to simplify calculation, we use the relation that the area A(W5 �C6) is maximum with the
restriction M6 ∈ ∂C5 is the same as that the area A((W5 � C6)c) is maximum with the
restriction M6 ∈ ∂C5. Hence, we calculate the area A((W5 � C6)c) against the moving point
M6 numerically for several fixed values of r among tan–12 ≤ r < r7. As a result, for the four
values of r in Fig. 7, we find that A((W5 � C6)c) is maximum when M6 is put on K8. Figure
7 shows the graph of computational results. In this figure, the horizontal axis is the position
of M6 on the arc K7K8 of C5 and the vertical axis is the area A((W5 � C6)c). Then, we expect
that   �ν =1

6 Cν is in an extreme state if and only if M6 is put at K8 in the range tan–12 ≤ r < r7.
We shall check that K8 is such a point after obtaining the exact values of the angular radius
r as in the cases of M4 and M5. We choose here M6 on the point K8.

Then, when M6 is put at K8, we notice that three cases are possible to be considered for
the relation between r and ds(K8, K4): r = ds(K8, K4); r < ds(K8, K4); and r > ds(K8, K4). First,
we consider the case r = ds(K8, K4). From (9) and the coordinates of K4 and K8 in Appendix
A.1, we have
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Equation (12) is the quartic equation of cosr and can be solved by using the algebraic
formula of Ferrari. As a result, we get the following value of the angular radius r.

r = − +
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Then, we find the following relation among ds(K8, K4), ds(K4, K7), and r by using
mathematical software.

d K K d K K rs s4 7 8 4 14, , .( ) = ( ) = ( )

Therefore, from (8) and (14), we see that the spherical triangle K8K4K7 is equilateral and
the uncovered region (W6)c is the concave isosceles triangle K4K6K7 on S inside the
spherical isosceles triangle K4K6K7. From the value of (13) and the coordinates of K4, K6,
and K7 in Appendix A.1, we find that the spherical isosceles triangle K4K6K7 satisfies the
relations π/2 ≥ ds(K4, H) = ds(H, K7) = ds(K4, K7)/2 ≥ ds(H, K6) > 0. Note that H is the middle
point of the geodesic arc K4K7. Therefore, from Theorem 2 in Subsec. 2.4, the largest
spherical distance in (W6)c is ds(K4, K7). Hence,   �ν =1

7 Cν is in an extreme state (the set

  �ν =1
7 Cν covers S except for a point) if and only if r = ds(K4, K7) and M7 is chosen on one

of the points K7 or K4. Here we put M7 on K7; namely the spherical surface S is covered by
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the set   �ν =1
7 Cν except for the point K4. Then, from the relation (14), we find r7 =

cos–1(–1/7 + 2 2 /7). Thus, from the fact K7 ∈ ∂C6, it is obvious that r7  is equal to the upper
bound r8 for N = 8. Finally, M8 is uniquely determined to be the uncovered point K4, and
then the whole of S is covered by   �ν =1

8 Cν which contains W7 (see Fig. 8(a)).
Next, we consider the other two cases r < ds(K8, K4) and r > ds(K8, K4) by way of

precaution. Here, we examine the relations among ds(K8, K4), ds(K4, K7), and r, and find
numerically that the following relations hold by using mathematical software.

For tan cos ,  , , , .− −≤ < − +
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In the case (15), since the angular radius r is smaller than ds(K8, K4), the uncovered region
(W6)c is reduced to the pentagon which is bounded by perimeters of spherical caps and
ds(K4, K7) inside this pentagon is larger than r due to (8) and (15). As was described in
Subsec. 2.4, we expect the situation that the set W7 covers S except for finite points.
Therefore, in the uncovered pentagon (W6)c, we take r7  to be the spherical distance of the
largest interval, such that at least one endpoint of the interval comes on the perimeter ∂C6.
However, from the relation (15), we cannot take r to be the largest spherical distance in
(W6)c. Further, we find that an uncovered region is left on S when M7 is put on the uncovered
pentagon (W6)c according to our sequential covering. Refer to the considerations of
determination for M7 and the fact that the uncovered region is left when W7 is formed on
S for tan–12 ≤ r < cos–1(–1/7 + 2 2 /7) in the following Subsections. In the case (16), on
the other hand, since the angular radius r is larger than ds(K8, K4), the uncovered region
(W6)c is reduced to the triangle which is bounded by perimeters of spherical caps and the
spherical distance of the largest interval inside this triangle is smaller than r due to (8) and

Fig. 8.  (a) Our sequential covering for N = 8. (b) Our solution of Tammes problem for N = 8. Both viewpoints
are (0, 0, 10). In this example, the coordinates of the centers are respectively (0, 0, –1), (0.19992, –0.94435,
–0.26120), (0.96528, 0, –0.26120), (0.19992, 0.94435, –0.26120), (–0.88248, 0.39116, –0.26120), (–0.68256,
–0.55319, 0.47759), (–0.28273, 0.55319, 0.78361), and (0.48264, –0.39116, 0.78361).
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(16). Then, the seventh spherical cap C7 covers the uncovered triangle (W6)c completely
when the center M7 is put in this triangle. Namely, the center of C8 cannot be placed on S
under the Minkowski condition. Therefore, in two cases above, the range of r is not suitable
for our upper bound.

Now, when r is equal to the value of (13), we check whether the positions of points K2,
K5, and K8 for M4, M5, and M6 satisfy the condition that   �ν =1

4 Cν,   �ν =1
5 Cν, and   �ν =1

6 Cν are
in an extreme state, respectively. For i = 4, 5, and 6, as mentioned above, we checked
numerically that the points K2, K5, and K8 are the positions where the area A(Wi–1 � Ci) (or
A((Wi–1 � Ci)

c)) are maximum with the restriction Mi ∈ ∂Ci–1 (  �ν =1
i Cν is in an extreme

state), respectively, when r is equal to cos–1(–1/7 + 2 2 /7). Then, the facts are indicated
by the curve of r � 1.30653 corresponding to r = cos–1(–1/7 + 2 2 /7) in Figs. 3, 4, and
7. Thus, for the case N = 8, our choice of M4, M5, and M6 is justified.

At the beginning of this subsection, we initially assumed that r should be in the range
(tan–12, r7]. In fact, after the investigation, our upper bound r8 (the value of (13)) has fallen
within the range (tan–12, r7]. However, one might suspect that the fact is due to the
assumption. So, if r is in the range (0, tan–12], we examine whether W7 is able to cover S
except for finite points. From the results of r � 1.10715 in Figs. 3, 4, and 7, we find that
the set W7 must leave an uncovered region on S when r is equal to tan–12 ≈ 1.10715.
Therefore, from the setup of our problem, r = tan–12 cannot be r8. Furthermore, for
0 < r < tan–12, the uncovered region would become still bigger. Thus, our assumption that
r8 is in the range (tan–12, r7] is confirmed (r = tan–12 is just excluded from the above
consideration) and cos–1(–1/7 + 2 2 /7) is certainly a solution for N = 8.

3.4.  N = 9
According to the considerations for N = 7 and 8, the angular radius for N = 9 should

be smaller than r8. First, at the moment, we expect that the inequalities tan–12 ≤ r < r8 hold
like the case of N = 8. Then, the same positional relation of the first five spherical caps for
the case of N = 7 is used again. From Theorem 1 in Subsec. 2.2 and from the considerations
for determinations of M4 and M5 in Subsec. 3.2, we can consider that the set   �ν =1

5 Cν is in
an extreme state when the centers M1, M2, M3, M4, and M5 are placed at the points
(0, 0, –1), K1, (sinr, 0, –cosr), K2 and K5, respectively. To make sure, after obtaining the
exact value of r9, we shall check that the allocations of K2 and K5 to M4 and M5, respectively,
satisfy the condition that   �ν =1

4 Cν and   �ν =1
5 Cν are in an extreme state. In the same way as

Fig. 9.  The sketch of the kite K8K4K6K7 and the spherical rhombus K8K9K6K10.
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in Subsec. 3.2, the shape of the set (W5)c is again the kite K8K4K6K7 on the sphere. Then,
the relations (8) and (15) hold. We should cover this kite K8K4K6K7 except for a point by
the set C6 � C7 � C8 under the conditions M6 ∈ ∂C5, M7 ∈ ∂C6, and M8 ∈ ∂C7.

From the consideration for determination of M6 in Subsec. 3.3, and from the condition
that   �ν =1

6 Cν is in an extreme state, we can assume that the center M6 is placed on the point
K8 as in the case of N = 8. At this time, the uncovered region (W6)c is reduced to the pentagon
which is bounded by perimeters of spherical caps (see Fig. 9). Here, let K9 be one of the
cross points of the perimeters ∂C6 and ∂C2, and let it be outside C1. Further, let K10 be one
of the cross points of ∂C6 and ∂C5, and let it be outside C1. Obviously the relation
ds(K8, K9) = ds(K8, K10) holds. Now, we want to place three centers of C7, C8, and C9 in the
uncovered pentagon K9K4K6K7K10 under the Minkowski condition. Then, we consider an
spherical equilateral triangle of side-length r = ds(K8, K9) in the pentagon K9K4K6K7K10
since three centers M7, M8, and M9 could be arranged on the vertices of the spherical
equilateral triangle under the Minkowski condition. Therefore, we can assume that K9 and
K10 satisfy

d K K d K K d K K d K K d K Ks s s s s8 9 8 10 9 10 6 9 10 6 17, , , , , .( ) = ( )( ) = ( ) = ( ) = ( ) ( )

As shown in Fig. 9, we see the spherical rhombus K8K9K6K10 which is formed with two
spherical equilateral triangles K8K9K10 and K9K6K10. If the spherical rhombus K8K9K6K10
which satisfies (17) is possible to be formed, we can consider that the angular radius r9 ( r8 )
is equal to a side-length (e.g. the spherical distance between the points K8 and K9) of the
spherical rhombus K8K9K6K10 if and only if M7 is placed on the point K9 or K10. We shall
show that this allocation of M7 is actually possible, after obtaining the solution r9. Then,
due to ds(K9, K2) = 2r (the proof is given in Appendix A.3), C7 is in contact with C4 at the
point K6 and the shape of the uncovered region should be a triangle K10K6K7 when M7 is
placed on the point K9. At this time, we will see later that the side-length of spherical
rhombus K8K9K6K10 is the largest spherical distance in the uncovered triangular region.
Thus, if M8 is chosen either on the point K6 or K10, the triangle is covered by C8 except for
a point in the triangle. Note that we supposed that the points K8 and K9 are the positions such
that   �ν =1

6 Cν and   �ν =1
7 Cν are in an extreme state, respectively. However, it is not checked

yet that K8 and K9 are such positions in this step. We shall check these points after obtaining
the exact value of r9 and the coordinates of K9.

Now we examine whether the point K9 or K10 which satisfies (17) is possible to exist.
To begin with, we calculate the coordinates of the point K9. Since K9 is one of the cross
points of the perimeters ∂C6 and ∂C2, the coordinates of K9 can be obtained by using the
simultaneous equation (4). Refer to the coordinates of K8 = M6 in Appendix A.1 and Eq.
(6) (the coordinates of K1 = M2). The exact coordinates of K9 = (x9, y9, z9) are given in
Appendix A.1. From our consideration that r9 ( r8 ) is equal to a side-length of spherical
rhombus K8K9K6K10 which satisfies (17), we will solve the equation

r d K K
r r r r r

r r r r
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against r. By developing Eq. (18), we obtain the quartic equation of cosr. Therefore, (18)
can be solved by using the algebraic formula of Ferrari as in the case of N = 8. As a result,
the value of the angular radius r is obtained as

r r9 8
1 1

3
1 23096= = 



 ≈ ( )−cos . rad. 19

From (19) and the coordinates of K6, K8, K9, and K10, we checked that the relation (17)
strictly holds; namely ds(K8, K9) = ds(K8, K10) = ds(K9, K10) = ds(K6, K9) = ds(K10, K6) =
cos–1(1/3). Then, K10 is obtained by using the fact that it is one of the cross points of the
perimeters ∂C6 and ∂C5. Note that the coordinates of the point K10 are omitted due to their
long expressions. As we have noted, we check here whether the positions of the point K2,
K5, K8, and K9 for M4, M5, M6, and M7 satisfy the condition that   �ν =1

4 Cν,   �ν =1
5 Cν,   �ν =1

6 Cν,

and   �ν =1
7 Cν are in an extreme state, respectively, by using the value of (19). First, we

checked numerically that A(Wi–1 � Ci) (or A((Wi–1 � Ci)
c)) are maximum when Mi (i = 4,

5, and 6) are put at K2, K5, and K8, respectively. These facts are indicated by the curve of
r � 1.23096 corresponding to r = cos–1(1/3) in Figs. 3, 4, and 7. Therefore, we find
numerically that the positions of K2, K5, and K8 satisfy the condition that   �ν =1

4 Cν,   �ν =1
5 Cν,

and   �ν =1
6 Cν are in an extreme state, respectively. Next, we examine the position of M7

where the area A(W6 � C7) is maximum. Then, in order to simplify calculation, we use the
relation that the area A(W6 � C7) is maximum with the restriction M7 ∈ ∂C6 is the same as
that the area A((W6 � C7)c) is maximum with the restriction M7 ∈ ∂C6. Then, we calculate
the area A((W6 �C7)c) against the moving point M7 on the arc K10K9 of C6 numerically for
several fixed values of r among tan–12 ≤ r < r8. As a result, the curve of A((W6 � C7)c) is
symmetrical at the center of the arc K10K9 (it is evident from the shape of uncovered region
(W6)c) and A((W6 � C7)c) is maximum at both end for the two values of r in Fig. 10. The
same fact as above would hold for every values of r in the range tan–12 ≤ r < r8. Figure 10
illustrates the result of computation for M7. In this figure, the horizontal axis is the position
of M7 on the arc K10K9 of C6 and the vertical axis is the area A((W6 � C7)c). Then, the result

Fig. 10.  The change of A((W6 � C7)c) when M7 is moved on the arc K10K9 of C6. The similar computation method
as in Fig. 3 is taken. See the legend in Fig. 3.
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is graphically presented by the curve of r � 1.23096 corresponding to r = cos–1(1/3) in Fig.
10. Therefore, for r = cos–1(1/3), we check numerically that   �ν =1

7 Cν are in an extreme state
if and only if M7 is put at K9 or K10.

As mentioned above, in this paper, we put M7 at K9. Then, the uncovered region (W7)c

is the triangle K10K6K7 on S that satisfies the relations π/2 ≥ ds(K10, H) = ds(H, K6) =
ds(K10, K6)/2 ≥ ds(H, K7) > 0. We note that H is the middle point of the geodesic arc K10K6.
From Theorem 2 in Subsec. 2.4, the largest spherical distance in (W7)c is ds(K10, K6).
Namely, we find r8  = cos–1(1/3). Hence, if M8 is put at K10 or K6, the set   �ν =1

8 Cν which
contains W7 covers the spherical surface S except for a point. Then, due to the facts
K6 ∈ ∂C7 and K10 ∈ ∂C7, we find that   �ν =1

8 Cν is in an extreme state. In this paper, we choose
M8 on K6.

Then, cos–1(1/3) satisfies the initial assumption tan–12 ≤ r < r8. However, one can
suspect this result is owing to the initial assumption. When r is in the range (0, tan–12], we
check whether W8 is able to cover S except for finite points. From the results of r � 1.10715
in Figs. 3, 4, 7, and 10, we find the fact that our first to eighth spherical caps must leave an
uncovered region on S when r is equal to tan–12 ≈ 1.10715. Hence, for 0 < r < tan–12, the
uncovered region would become still bigger. Therefore, our upper bound r9 for N = 9 does
not exist in the range (0, tan–12] like the case of N = 8. Thus, we note that tan–12 < r < r8
is confirmed (r = tan–12 is just excluded from the above consideration).

Finally, M9 is put on the unique uncovered point K10, and then   �ν =1
9 Cν which contains

W8 covers the whole of S (see Fig. 11(a)). Thus, our consideration that the angular radius
r9 ( r8 ) is equal to a side-length of spherical rhombus K8K9K6K10 which satisfies (17) is
confirmed and cos–1(1/3) is certainly a solution for N = 9.

4.  Conclusion

In Sec. 3, we calculated the upper bound of r for N = 2, ..., 9, such that the set   �ν =1
N Cν

which contains WN–1 covers the whole spherical surface S (see Table 2).

Fig. 11.  (a) Our sequential covering for N = 9. (b) Our solution of Tammes problem for N = 9. Both viewpoints
are (0, 0, 10). In this example, the coordinates of the centers are respectively (0, 0, –1), (0.23570, –0.91287,
–0.33333), (0.94281, 0, –0.33333), (0.23570, 0.91287, –0.33333), (–0.82496, 0.45644, –0.33333), (–0.78567,
–0.60858, 0.11111), (0.15713, –0.60858, 0.77778), (0.58926, 0.45644, 0.66667), and (–0.54997, 0.30429,
0.77778).
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It was described, in Subsec. 2.1, that the covering with spherical caps of angular radius
r is correspondent with the packing with half-caps (see Subsec. 2.1 for its definition)
according to our method that the centers of spherical caps are chosen on the perimeters of
other spherical caps under the Minkowski condition. Let us suppose the centers of N half-
caps are placed on the positions of the centers of spherical caps Ci (i = 1, ..., N) which are
considered in Sec. 3. At this time, we get the packing with N congruent half-caps (see Figs.
6(b), 8(b), and 11(b)). Then, for N = 2, ..., 9, we find that the upper bound of angular radius
of our problem with N congruent spherical caps and the value of angular diameter of
Tammes problem with N congruent spherical caps are equivalent. In addition, we find that
the location of centers of our problem is correspondent with that of the Tammes problem
for N = 2, ..., 9, respectively (SCHÜTTE and VAN DER WAERDEN, 1951; DANZER, 1963;
FEJES TÓTH, 1972).

Accordingly, we find the fact that the results of our problem are coincident with those
of Tammes problem about N = 2, ..., 9 at least (SUGIMOTO and TANEMURA, 2002, 2003,
2004). Further, SCHÜTTE and VAN DER WAERDEN (1951), and DANZER (1963) have solved
the Tammes problem for N = 7, 8, and 9, through the consideration on irreducible graphs
obtained by connecting those points, among N points, whose spherical distance is exactly
the minimal distance. Then, after establishing the theorem which states that such irreducible
graphs can only have triangles and quadrangles, Schütte, van der Waerden, and Danzer
proved and obtained the minimal distance r for respective values of N = 7, 8, and 9. Further,
they need the independent considerations for N = 7, 8, and 9, respectively (SCHÜTTE and
VAN DER WAERDEN, 1951; DANZER, 1963; FEJES TÓTH, 1972). In contrast to this, we
presented in this paper a systematic method which is different from the approach by
SchÜtte, van der Waerden, and Danzer. Namely, as shown in Subsec. 2.4 and Sec. 3, our
method is able to obtain a solution for N by using the results for the case N – 1 or N – 2
successively. In addition, in this study, we have considered the packing problem from the
standpoint of sequential covering. The advantages of our approach are that we only need
to observe uncovered region in the process of packing and that this uncovered region
decreases step by step as the packing proceeds. At least, in the cases of N ≤ 9, the solutions

Table 2.  Upper bound rN of our problem.

Number of spherical caps
N

Upper bound of angular radius of our problem
rN [rad]

2 π ≈ 3.14159

3 2π /3 ≈ 2.09440

4 π – cos–1(1/3) ≈ 1.91063

5 π /2 ≈ 1.57080

6 π /2 ≈ 1.57080

7 cos–1(1 – (4/ 3 )cos(7π /18)) ≈ 1.35908

8 cos–1(–1/7 + 2 2 /7) ≈ 1.30653
9 cos–1(1/3) ≈ 1.23096
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of Tammes problem can be found by our method. However, we may say that our method
has not necessarily given a mathematical rigorous proof about our result.

In this paper, we used the mathematical software, Maple*, which is capable of
manipulating complicate algebraic expressions exactly and is also useful for numerical
computations. Consequently, we were able to calculate strict coordinates and solutions.

Here, we remark on the efficiency of covering. Now, let us define the efficiency of
covering on spherical surface by (area of S)/(N × (area of a cap)) = 2/(N × (1 – cosr)). Then,
from the value of rN and from the positions of Ci (i = 1, ..., N), it appears that our solutions
of N = 2, ...,9 give the worst efficient covering of S with N congruent spherical caps under
the Minkowski condition respectively. At least, from Lemma and Theorem in Subsec. 2.2,
it is obvious that our solutions r2 and r3 for N = 2 and 3, respectively, give the worst efficient
covering under the Minkowski condition. Namely, our results r2 = π and r3 = 2π/3
respectively give the efficiency of covering 1/2 and 4/9 (SUGIMOTO and TANEMURA, 2004).
However, its proof for other values of N is still open and it is taken as a future subject.

The authors would like to thank Prof. L. Danzer, Univ. of Dortmund, and Prof. H. Maehara,
Univ. of Ryukyu, for their helpful comments. The research was partly supported by the Grant-in-Aid
for Scientific Research (the Grant-in-Aid for JSPS Fellows) from the Ministry of Education, Culture,
Sports, Science, and Technology (MEXT) of Japan.

Appendix A.1:  The Coordinates of the Point Ki (i = 3, 4, 5, 6, 7,8 and 9)

In the following, r (tan–12 ≤ r ≤ π/2) is the angular radius.
K3 = (x3, y3, z3):
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K6 = (x6, y6, z6):
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K9 = (x9, y9, z9):
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Appendix A.2:  The Overlapping Area of Two Congruent Spherical Caps

We give the overlapping area Aij of two congruent spherical caps Ci and Cj of angular
radius r, where their centers are Mi and Mj, respectively (see Fig. A1). We denote by sij the
spherical distance between Mi and Mj and we assume r ≤ sij ≤ 2r. Then, let us assume G be
the middle point of the geodesic arc MiMj. Further, we define T1 and T2 as the two cross
points of perimeters ∂Ci and ∂Cj. Thus, the spherical distance hij between T1 and T2 is
expressed by using the spherical cosine formula about a spherical right triangle MiGT1 as
follows:
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If the points Mi, T1 and T2 are mutually connected by geodesic arcs, there arises a
spherical isosceles triangle MiT1T2 on the unit sphere. Then, let λ and µ be the interior
angles at vertices Mi and T1 (T2) of this triangle, respectively. By the spherical cosine
theorem, we have
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Then the area A1 of the spherical isosceles triangle MiT1T2 turns out
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On the other hand, the area of a spherical cap of the angular radius r is
|C| = 2π (1 – cosr). Therefore the area A2 of a sector with angle λ of the spherical cap is equal
to |C| · λ/2π, namely
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Thus the overlapping area Aij of Ci and Cj is
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Fig. A1.  Overlapping area Aij.
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Appendix A.3:  The Proof of ds(K9, K2) = 2r for N = 9

For N = 9, the first five centers M1, M2, M3, M4, and M5 are placed at the points
(0, 0, –1), K1, (sinr, 0, –cosr), K2 and K5, respectively, in order to satisfy the condition that
the set   �ν =1

5 Cν is in an extreme state. Then, the shape of the set (W5)c is the kite K8K4K6K7

on the sphere (see Fig. A2). We note that the sides of the kite K8K4K6K7 are not geodesic
arcs but are perimeters of spherical caps. Next, we assume that K9 ∈ ∂C2 and K10 ∈ ∂C5
satisfy the relations (17). In order to prove the relation ds(K9, K2) = 2r, we first note that
K4, K6, K2 ∈ ∂C3 and K7, K6, M3 ∈ ∂C4. Then, obviously the relations r = ds(K7, K2) =
ds(K2, K6) = ds(K2, M3) = ds(K6, M3) = ds(M3, K4) hold. As shown in Fig. A2, we see the
pentagon K8K4M3K2K7 on S contains the kite K8K4K6K7 and three spherical equilateral
triangles K8K9K10, K9K6K10, and K6M3K2. Note that our pentagon K8K4M3K2K7 is not a
spherical pentagon since the sides K8K4 and K8K7 are perimeters of spherical caps. Here,
let G be the middle point of the geodesic arc M3K2. Next, let q denote the great circle
determined by K8 and G. Then, from the relations (8), (17), and r = ds(K7, K2) = ds(K2, K6)
= ds(K2, M3) = ds(K6, M3) = ds(M3, K4), the pentagon K8K4M3K2K7 and three spherical
equilateral triangles K8K9K10, K9K6K10, and K6M3K2 are symmetrical by reflection with
respect to q. Accordingly, the great circle q is the mirror arc reflecting K9 to K10, K4 to K7,
and M3 to K2, respectively. In addition, we see that K6 is on q. Therefore, K9, K6, and K2 are
on one great circle. Thus, ds(K9, K2) = ds(K9, K6) + ds(K6, K2) = r + r = 2r holds.
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