Packing and Minkowski Covering of Congruent Spherical Caps on a Sphere for $N=2, \ldots, 9$

Teruhisa Sugimoto ${ }^{1 *}$ and Masaharu Tanemura ${ }^{1,2}$
${ }^{1}$ The Institute of Statistical Mathematics, 4-6-7 Minami-Azabu, Minato-ku, Tokyo 106-8569, Japan
${ }^{2}$ Department of Statistical Science, The Graduate University for Advanced Studies, 4-6-7 Minami-Azabu, Minato-ku, Tokyo 106-8569, Japan
*E-mail address: sugimoto@ism.ac.jp

(Received January 00, 2005; Accepted February 00, 2005)
Keyword: Spherical Cap, Sphere, Packing, Covering, Minkowski Set

Abstract

Let $C_{i}(i=1, \ldots, N)$ be the i-th open spherical cap of angular radius r and let M_{i} be its center under the condition that none of the spherical caps contains the center of another one in its interior. We consider the upper bound, r_{N} (not the lower bound!) of r of the case in which the whole spherical surface of a unit sphere is completely covered with N congruent open spherical caps under the condition, sequentially for $i=2, \ldots, N-1$, that M_{i} is set on the perimeter of C_{i-1}, and that each area of the set $\left(\cup_{v=1}^{i-1} C_{v}\right) \cap C_{i}$ becomes maximum. In this study, for $N=2, \ldots, 9$, we found out that the solutions of the above covering and the solutions of Tammes problem were strictly correspondent.

1. Introduction

"How must N congruent non-overlapping spherical caps be packed on the surface of a unit sphere so that the angular diameter of spherical caps will be as great as possible?" This packing problem is also called the Tammes problem and mathematically proved solutions were known for $N=1, \ldots, 12$, and 24 (SchÜtte and VAN DER WAERDEN, 1951; Danzer, 1963; Fejes Tóth, 1969, 1972; Teshima and Ogawa, 2000). On the other hand, the problem "How must the covering of a unit sphere be formed by N congruent spherical caps so that the angular radius of the spherical caps will be as small as possible?" is also important. It can be considered that this problem is dual to the problem of packing of Tammes (Fejes Tóth, 1969). Among the problems of packing and covering on the spherical surface, the Tammes problem is the most famous. However, the systematic method of attaining these solutions has not been given.

In this paper, we would like to think of the covering in connection with the packing problem. Therefore, we consider the covering of the spherical caps such that none of them contains the center of another one in its interior. Such a set of centers is said to be a Minkowski set (Fejes Tóth, 1999). Hereafter, we call the condition of Minkowski set of centers "Minkowski condition." In addition, the covering which satisfies the Minkowski condition is called "Minkowski covering." If angular radii of spherical caps which cover
the unit sphere under the Minkowski condition are concentrically reduced to half, the resulting spherical caps do not overlap. Then, our purpose in this paper is to obtain the upper bound (not the lower bound!) of angular radius of spherical caps which cover the unit sphere under the Minkowski condition.

Suppose we have N congruent open spherical caps with angular radius r on the surface S of the unit sphere and suppose that these spherical caps cover the whole spherical surface without any gap and that the Minkowski covering is realized. Further we suppose the spherical caps are put on S sequentially in the manner which is described just below. Let C_{i} be the i-th open spherical cap and let M_{i} be its center $(i=1, \ldots, N)$. Our problem is to calculate the upper bound of r for the sequential covering, such that N congruent open spherical caps cover the whole spherical surface S under the condition that M_{i} is set on the perimeter of C_{i-1}, and that each area of set $\left(\cup_{v=1}^{i-1} C_{v}\right) \cap C_{i}$ become maximum in sequence for $i=2, \ldots, N-1$ (Sugimoto and TANEMURA, 2002, 2003, 2004). In this paper, we calculate the upper bound of r for $N=2, \ldots, 9$ theoretically; the case $N=1$ is self-evident. It is shown in this paper that the solutions of our problem are strictly correspondent to those of the Tammes problem for $N=2, \ldots, 9$. Further, it should be said that our method is a systematic and a different approach to the Tammes problem from the works by SCHÜTTE and VAN DER WAERDEN (1951), etc.

In Sec. 2, to solve our problem, we consider the properties of spherical caps under the Minkowski condition. Then, we explain the procedure of our sequential covering and define the upper bouds r_{N} and \bar{r}_{N-1}. In Sec. 3 we give the solutions of our problem successively for $N=2, \ldots, 9$. Our conclusion is summarized in Sec. 4 .

2. Sequential Covering

Throughout this paper we assume that the center of the unit sphere is the origin $O=$ $(0,0,0)$. Hereafter, we represent the surface of this unit sphere by the symbol S. In the following, open spherical caps are simply written as spherical caps unless otherwise stated. We define the geodesic arc between an arbitrary pair of points T_{i} and T_{j} on S as the inferior arc of the great circle determined by T_{i} and T_{j}. Then the spherical distance between T_{i} and T_{j} is defined by the length of geodesic arc of this pair of points.

2.1. Relationship between the kissing number and the angular radius of spherical caps

First of all, we consider how many centers of congruent spherical caps can be placed on the perimeter of a spherical cap under the Minkowski condition. This problem is related to the kissing number of spherical caps. In the plane, one circle can contact simultaneously with six other congruent circles. Then the kissing number is always six in the plane. On the sphere, on the contrary, the kissing number of a circle (spherical cap) on the spherical surface changes with its angular radius. Its maximum value is five as we will see below. Here, we define a "half-cap" as the spherical cap whose angular radius is $r / 2$ and which is concentric with that of the original cap. When the kissing number is k, there can k half-caps contact with the central half-cap and there is no space for another half-cap to enter. At this instance, let us increase r until the peripheries of k half-caps contact with one another. Then, if the centers of two half-caps in contact are joined by a geodesic arc, there arise k spherical equilateral triangles of side-length r and of inner angle $\sigma=2 \pi / k$ around the central

Table 1. Relationship between k and r.

k	Range of r
1	$(2 \pi / 3, \pi]$
2	$\left(\pi-\cos ^{-1}(1 / 3), 2 \pi / 3\right]$
3	$\left(\pi / 2, \pi-\cos ^{-1}(1 / 3)\right]$
4	$\left(\tan ^{-1} 2, \pi / 2\right]$
5	$\left(0, \tan ^{-1} 2\right]$

half-cap. Thus by applying the spherical cosine theorem to one of the spherical equilateral triangles, we have

$$
\begin{equation*}
r=\cos ^{-1}\left(\frac{\cos \sigma}{1-\cos \sigma}\right) \tag{1}
\end{equation*}
$$

By substituting $\sigma=2 \pi / k$ into (1), we can calculate the upper bound value of r for a given kissing number $k(>1)$. Note that, for $k=1$, it is clear that the upper bound value is π. For $k \geq 6$, Eq. (1) cannot have a solution. Namely, for $k=6$, we get at once $r=\cos ^{-1} 1=0$, and for $k>6$, we get the inequality $\cos \sigma /(1-\cos \sigma)>1$ indicating that no real value solution exists for r. Therefore the maximum value of the kissing number of a spherical cap (circle on the spherical surface) is five. As a result, we obtain the relationship between k and r as is shown in Table 1 (Sugimoto and Tanemura, 2001, 2002, 2003; Sugimoto, 2002). For example, from Table 1, the kissing number k is four when the angular diameter of a spherical cap is in the range $\left(\tan ^{-1} 2, \pi / 2\right]$. Note that inclusion of the upper bound in the range of r in Table 1 is correspondent to the Minkowski condition.

Next, let us consider the packing with half-caps and the covering with corresponding spherical caps (of angular radius r) where each half-cap is concentric with correspondent spherical caps. Then it is observed that this covering satisfies the Minkowski condition; namely, this is the Minkowski covering. For the covering that the centers of spherical caps are chosen on the perimeters of other spherical caps under the Minkowski condition, we see from Table 1 that, for example, four spherical caps can be placed on the perimeter of a spherical cap when angular radius is in the range $\left(\tan ^{-1} 2, \pi / 2\right]$. We note that the discussions of this subsection are valid for both of open and closed spherical caps.

2.2. Overlapping area of congruent spherical caps

In order to solve our problem, we consider the overlapping area of congruent spherical caps under the Minkowski condition.

Assume C_{i} and C_{j} be two congruent spherical caps, of angular radius r, which are mutually overlapping under the Minkowski condition, and let $A_{i j}=A\left(C_{i} \cap C_{j}\right)$ be the overlapping area where $A(X)$ is the area of X. Further, when T_{i} and T_{j} are the points on S, let $d_{s}\left(T_{i}, T_{j}\right)$ denote the spherical distance between points T_{i} and T_{j}. Especially, we denote $s_{i j}=d_{s}\left(M_{i}, M_{j}\right)$ as the spherical distance between centers of C_{i} and $C_{j}\left(r \leq s_{i j} \leq 2 r\right)$. Then let
$h_{i j}$ be the spherical distance between cross points of perimeters of C_{i} and C_{j}. By using the spherical cosine formula about a spherical right triangle, we have

$$
h_{i j}=2 \cos ^{-1}\left(\frac{\cos r}{\cos \left(s_{i j} / 2\right)}\right)
$$

Then the overlapping area of C_{i} and C_{j} is given by

$$
\begin{equation*}
A_{i j}=-2 \cos ^{-1}\left(\frac{\cos h_{i j}-\cos ^{2} r}{\sin ^{2} r}\right) \cos r-4 \cos ^{-1}\left(\frac{1-\cos h_{i j}}{\tan r \cdot \sin h_{i j}}\right)+2 \pi \tag{2}
\end{equation*}
$$

For the detailed derivation of (2), see Appendix A.2. It is obvious that $A_{i j}$ is a continuous function of r and $s_{i j}$ (Sugimoto and Tanemura, 2001, 2002; Sugimoto, 2002). Then, we get the following Lemma (Sugimoto and Tanemura, 2004).

Lemma. If the range of angular radius r is $0<r \leq 2 \pi / 3$, then the overlapping area $A_{i j}$ of the set $C_{i} \cap C_{j}$ is a monotone decreasing function of $s_{i j}=d_{s}\left(M_{i}, M_{j}\right)$ when r is fixed. Then, $A_{i j}$ is maximum when $s_{i j}=r$.

Proof. At first, we show that the range of r should be $0<r \leq 2 \pi / 3$ in order $A_{i j}$ to be a function of $s_{i j}$. Under the Minkowski condition, if $2 \pi / 3<r \leq \pi$, the area of the set $C_{i} \cap C_{j}$ is always constant $4 \pi \cos r$ and, if $r>\pi$, two spherical caps cannot be put on the spherical surface S. Therefore, the range of angular radius is limited to $0<r \leq 2 \pi / 3$. Let $G(a)$ and $G(b)$ be the set $C_{i} \cap C_{j}$ for $s_{i j}=a$ and $b(a<b)$, respectively. We assume that C_{i} and C_{j} contact with each other first. Let e be the geodesic arc between fixed centers of these spherical caps. Next, let C_{i} be fixed and let us move C_{j} by moving M_{j} along e toward M_{i}. Then, it is obvious that $G(a) \supset G(b)$ holds during this movement. Therefore, for r fixed, $A_{i j}$ is a monotone decreasing function of $s_{i j}$. Thus, $A_{i j}$ is maximum when $s_{i j}=r$.

On the contrary, $A_{i j}$ is a monotone increasing function of $h_{i j}$ when r is fixed. Further, when $s_{i j}=r$, we find that the area of set $C_{i} \cup C_{j}$ is minimum.

Let N be the number of spherical caps when the whole spherical surface is completely covered. And, let ∂C_{i} be the perimeter of $C_{i}(i=1, \ldots, N)$. Then we define:

$$
\begin{equation*}
W_{i}=\left\{W_{i-1} \cup C_{i} \mid \max _{M_{i} \in \partial C_{i-1}} A\left(W_{i-1} \cap C_{i}\right)\right\}, \quad i=2, \ldots, N-1 ; W_{1}=C_{1} \tag{3}
\end{equation*}
$$

In other words, W_{i} is the union of W_{i-1} and C_{i} satisfying the condition that the area $A\left(W_{i-1} \cap C_{i}\right)$ is maximum with the restriction $M_{i} \in \partial C_{i-1}$ (Sugimoto and Tanemura, 2002, 2003). Hereafter, we call that " $\cup_{v=1}^{i} C_{v}$ is in an extreme state" when the set of spherical caps C_{1}, \ldots, C_{i} possesses the property (3). We are always necessary to examine

Fig. 1. The sketch of W_{2} and $W_{2} \cup C_{3}$.
whether $\cup_{v=1}^{i} C_{v}$ is in an extreme state in the sequential covering procedure of our problem mentioned in Sec. 1. For this purpose, we calculate the area $A\left(W_{i-1} \cap C_{i}\right)$ by using (2) and the area formula of spherical triangle. Here, we consider W_{2} defined in (3). From Lemma, the area $A\left(C_{1} \cap C_{2}\right)$ will become maximum when M_{2}, the center of C_{2}, is put on ∂C_{1}. Therefore, for $i=2$, the set $W_{2}=\cup_{v=1}^{2} C_{v}$ is in an extreme state when $s_{12}=r$ for $0<r \leq 2 \pi / 3$ as shown in Fig. 1(a).

Next, we consider W_{3}. In order to make the situation that $\cup_{v=1}^{3} C_{v}$ is in an extreme state ($A\left(W_{2} \cap C_{3}\right)$ is maximum with the restriction $M_{3} \in \partial C_{2}$), from the definition of (3), we can assume $N \geq 4$. Therefore, the whole spherical surface must be covered by four or more spherical caps under the Minkowski condition. Then, we present the following theorem (Sugimoto and Tanemura, 2003).

Theorem 1. If the range of angular radius r is $0<r \leq \pi-\cos ^{-1}(1 / 3)$, then $\cup_{v=1}^{3} C_{\nu}$ is in an extreme state when $s_{12}=s_{13}=s_{23}=r$.

Proof. We first examine the range of r. From the consideration of kissing number in the foregoing Subsection, four or more spherical caps cannot be placed on S under the Minkowski condition when $r>\pi-\cos ^{-1}(1 / 3)$. Therefore, the range of r should be $0<r \leq \pi-\cos ^{-1}(1 / 3)$.
From Lemma, $\cup_{v=1}^{2} C_{v}$ is in an extreme state when $s_{12}=r$ (see Fig. 1(a)). Namely, at this time, $\cup_{v=1}^{2} C_{v}$ is identical to W_{2}. Then, we define T_{1} and T_{2} as the two cross points of perimeters ∂C_{1} and ∂C_{2}. Now, from (3), the center M_{3} is set on the perimeter of C_{2} outside
of C_{1} and we need to consider the area $A\left(W_{2} \cap C_{3}\right)$. At this time, $s_{23}=r$. Hence, from Lemma, the area $A_{23}=A\left(C_{2} \cap C_{3}\right)$ is always fixed and maximum for any $M_{3} \in \partial C_{2}$. Here, as shown in Fig. 1(b), let T_{3} be the fixed point on ∂C_{2} such that $d_{s}\left(T_{1}, T_{3}\right)=r$ and that it is outside C_{1}. First, we put M_{3} at T_{3}. Next, let us move M_{3} along ∂C_{2} toward T_{1}. Then, as shown in Fig. 1(c), we see the relation $A\left(W_{2} \cap C_{3}\right)=A\left(\left(C_{1} \cap C_{3}\right) \cap\left(C_{2}\right)^{c}\right)+A_{23}$ holds. Therefore, under the condition $M_{3} \in \partial C_{2}, A\left(W_{2} \cap C_{3}\right)$ is maximum when $A\left(\left(C_{1} \cap C_{3}\right) \cap\left(C_{2}\right)^{c}\right)$ attains its maximum. Then, we seek for the position of M_{3} when $A\left(\left(C_{1} \cap C_{3}\right) \cap\left(C_{2}\right)^{c}\right)$ is maximum. Let $G(a)$ and $G(b)$ be the set $\left(C_{1} \cap C_{3}\right) \cap\left(C_{2}\right)^{c}$ for $s_{13}=a$ and $b(a<b)$, respectively. Then, it is obvious that $G(a) \supset G(b)$ holds. Therefore, for r fixed, $A\left(\left(C_{1} \cap C_{3}\right) \cap\left(C_{2}\right)^{c}\right)$ is a monotone decreasing function of s_{13}. Hence, $A\left(\left(C_{1} \cap C_{3}\right) \cap\left(C_{2}\right)^{c}\right)$ is maximum when M_{3} is put at T_{1}. Therefore, $A\left(W_{2} \cap C_{3}\right)$ attains its maximum when M_{3} is selected on T_{1}. Then, $s_{13}=r$ holds. Thus, as shown in Fig. 1(d), $\cup_{v=1}^{3} C_{v}$ is in an extreme state when $s_{12}=s_{13}=$ $s_{23}=r$ for $0<r \leq \pi-\cos ^{-1}(1 / 3)$.

2.3. Procedure of sequential covering

As mentioned in Sec. 1, our problem is to calculate the upper bound of r for the sequential covering, such that N congruent open spherical caps cover the whole spherical surface under the condition that M_{i} is set on the perimeter ∂C_{i-1}, and that each area $A\left(W_{i-1} \cap C_{i}\right)$ becomes maximum in sequence for $i=2, \ldots, N-1$. Note that, although N spherical caps are needed in our problem, $N-1$ spherical caps are used in the sequential covering since we want to make the situation that $\cup_{v=1}^{N-1} C_{v}$ is in an extreme state. First, before beginning covering, the angular radius r of spherical caps is chosen sufficiently small so that $\cup_{v=1}^{N-1} C_{v}$ cannot cover the whole spherical surface in the Minkowski covering. Note that, in the result which will be obtained in the procedure below, the set W_{N-1} does not cover the whole spherical surface. Algorithmically, the procedure of sequential covering is the followings (Sugimoto and Tanemura, 2003):
STEP 1: The center M_{1} of the first spherical cap C_{1} is put at $(x, y, z)=(0,0,-1)$. Then, from (3), $W_{1}=C_{1}$ holds.

STEP 2: The center M_{2} of C_{2} is put at a certain point on the perimeter ∂C_{1}. As a result, $\cup_{v=1}^{2} C_{v}$ is in an extreme state $\left(A\left(W_{1} \cap C_{2}\right)\right.$ is maximum with the restriction $\left.M_{2} \in \partial C_{1}\right)$ since $s_{12}=r$. If $(N-1) \geq 3$, go to the next step; otherwise the procedure ends.
STEP 3: The center M_{3} of C_{3} is put on one of the cross points of ∂C_{1} and ∂C_{2}. Then $\cup_{v=1}^{3} C_{v}$ is in an extreme state since $s_{12}=s_{13}=s_{23}=r$. If $(N-1) \geq 4$, put $i=4$ and go to the next step; otherwise the procedure ends.
STEP 4: First, the center M_{i} of C_{i} is placed at a certain point on the acceptable part of ∂C_{i-1} which is outside the other spherical caps. Next, move M_{i} among the acceptable points on ∂C_{i-1} and compute $A\left(W_{i-1} \cap C_{i}\right)$ for respective points of M_{i}. Then, M_{i} is fixed at the position where $A\left(W_{i-1} \cap C_{i}\right)$ attains its maximum (i.e. the set W_{i} is formed on S). Go to STEP 5.
STEP 5: If $i=N-1$, the procedure ends; otherwise put $i \leftarrow i+1$ and go to STEP 4 .
Therefore, our sequential covering satisfies the condition that, sequentially for $i=2, \ldots, N-1$, each $A\left(W_{i-1} \cap C_{i}\right)$ is maximum with the restriction $M_{i} \in \partial C_{i-1}\left(\cup_{v=1}^{i} C_{v}\right.$ is in an extreme state).

2.4. Upper bounds r_{N} and \bar{r}_{N-1}

We define r_{N} as the upper bound of r which is mentioned at the top of Subsec.2.3. Next, we define another upper bound of r, \bar{r}_{N-1}, such that the set $\cup_{v=1}^{N-1} C_{v}$ which contains W_{N-2} cannot cover S under the Minkowski condition. Then \bar{r}_{N-1} should be equal to the spherical distance of the largest interval in the uncovered region $\left(W_{N-2}\right)^{c}$ of S. It is because, when the angular radius r is equal to \bar{r}_{N-1}, the set $\cup_{v=1}^{N-1} C_{v}$ which contains W_{N-2} can cover S except for a finite number of points or a line segment under our sequential covering. Therefore, $\cup_{v=1}^{N-1} C_{v}$ is in an extreme state if and only if at least one endpoint of the interval, which has the above mentioned spherical distance \bar{r}_{N-1}, comes on the perimeter ∂C_{N-2}. Further, when there are two or more uncovered points, the spherical distance of any pair of these uncovered points is less or equal to \bar{r}_{N-1} since the largest interval is assumed to be \bar{r}_{N-1}. Then, we can put the center M_{N} of C_{N} at one of the uncoverd points. At this moment, we see that $\cup_{v=1}^{N} C_{v}$ which contains W_{N-1} covers S without any gap. Then, we notice the fact that r_{N} is equal to \bar{r}_{N-1}.

Therefore, for our problem, it is necessary to know the spherical distance of the largest interval in the uncovered region $\left(W_{N-2}\right)^{c}$. In our cases in Sec. 3, it becomes important to consider triangles or quadrangles as the shape of $\left(W_{N-2}\right)^{c}$ in the final steps of sequential covering. For this purpose, we investigate the farthest pair of points in spherical triangle and quadrangle so that it is useful for later considerations.

First, we consider the spherical triangle. Let T_{1}, T_{2}, and T_{3} be the points on S and let the spherical triangle $T_{1} T_{2} T_{3}$ be such that the side $T_{1} T_{2}$ of the triangle $T_{1} T_{2} T_{3}$ is an inferior arc of the great circle determined by T_{1} and T_{2} : namely the side $T_{1} T_{2}$ is the geodesic arc and satisfies $0<d_{s}\left(T_{1}, T_{2}\right) \leq \pi$. Next, we define the point H as the middle point of the geodesic $\operatorname{arc} T_{1} T_{2}$. Then, we get the position of H as follows:

$$
\mathbf{H}=\frac{\mathbf{T}_{1}+\mathbf{T}_{2}}{2 \cos \left(\cos ^{-1}\left(\left(\mathbf{T}_{1}, \mathbf{T}_{2}\right)\right) / 2\right)}
$$

where a bold symbols $\mathbf{H}, \mathbf{T}_{1}$, and \mathbf{T}_{2} are unit vectors from the origin O to the points H, T_{1}, and T_{2} on the unit sphere, respectively, and where $\left(\mathbf{T}_{1}, \mathbf{T}_{2}\right)$ is the inner product of vectors \mathbf{T}_{1} and \mathbf{T}_{2}. Then, we get the following theorem.

Theorem 2. If the spherical triangle $T_{1} T_{2} T_{3}$ satisfies the condition $\pi / 2 \geq d_{s}\left(T_{1}, H\right)=$ $d_{s}\left(H, T_{2}\right)=d_{s}\left(T_{1}, T_{2}\right) / 2 \geq d_{s}\left(H, T_{3}\right)>0$, then the farthest pair of points inside the spherical triangle $T_{1} T_{2} T_{3}$ is the pair of T_{1} and T_{2}.

Proof. Let C^{\prime} be the closed spherical cap with its center at H and with its angular radius as $d_{s}\left(T_{1}, H\right)$. From the condition that $d_{s}\left(T_{1}, H\right) \geq d_{s}\left(H, T_{3}\right), T_{3}$ is inside C^{\prime}. In order to prove Theorem 2, we need to consider three cases: (I) $d_{s}\left(T_{1}, H\right)=d_{s}\left(H, T_{3}\right)=\pi / 2$ and $T_{3} \in \partial C^{\prime}$; (II) $d_{s}\left(T_{1}, H\right)=d_{s}\left(H, T_{3}\right)<\pi / 2$ and $T_{3} \in \partial C^{\prime}$; (III) $d_{s}\left(T_{1}, H\right) \leq \pi / 2$ and $T_{3} \notin \partial C^{\prime}$. First, for the case (I), let T_{1}, T_{2}, and H be $(0,1,0),(0,-1,0)$ and $(0,0,1)$, respectively. Namely, the geodesic arc $T_{1} T_{2}$ is the half of the great circle. Therefore, the perimeter of C^{\prime} is the equator of unit sphere. Then, all the sides of spherical triangle $T_{1} T_{2} T_{3}$ are the geodesic arcs.

Furthermore, the spherical triangle $T_{1} T_{2} T_{3}$ is formed with two sectors $T_{1} H T_{3}$ and $T_{2} T_{3} H$, and is contained in C^{\prime}. Therefore, it is clear that the spherical distance $d_{s}\left(T_{1}, T_{2}\right)=\pi$ is the largest distance. Next, for the case (II), $d_{s}\left(T_{1}, T_{3}\right)$ is shorter than the length of arc $T_{1} T_{3}$ of perimeter ∂C^{\prime} and the geodesic arc $T_{1} T_{3}$ is inside of C^{\prime}. Therefore, the spherical triangle $T_{1} H T_{3}$ is contained in the sector $T_{1} H T_{3}$. Hence, it is entirely contained in C^{\prime}. Similarly, we find that the spherical triangle $T_{2} T_{3} H$ is contained in C^{\prime}. Thus, the closed spherical cap C^{\prime} entirely contains the spherical triangle $T_{1} T_{2} T_{3}$. The proof for the case (III) is the same procedure as in the case (II). Therefore, in the cases (II) and (III), the spherical distance $d_{s}\left(T_{1}, T_{2}\right)$ is the largest distance. Thus, the farthest pair of points in spherical triangle $T_{1} T_{2} T_{3}$ is the pair of T_{1} and T_{2}.

Note that if the condition of Theorem 2 is not satisfied, the claim of Theorem 2 does not hold. For example, when the spherical triangle is an equilateral triangle of side lengths between $\pi / 2$ and π, its height is larger than the sides: namely the farthest pair of points in spherical equilateral triangle is not the pairs of spherical triangular vertices.

Next, we consider the case of quadrangle. Let us given the spherical triangle $T_{1} T_{2} T_{3}$ which satisfies the condition of Theorem 2. Then, we add the point T_{4} on S to the opposite side of T_{3} against the great circle which passes T_{1} and T_{2}. By joining T_{4} with T_{1} and T_{2} by the geodesic arcs, respectively, we make the spherical quadrangle $T_{1} T_{4} T_{2} T_{3}$ that is formed with two spherical triangles $T_{1} T_{2} T_{3}$ and $T_{1} T_{4} T_{2}$. Then, we have the following Corollary from Theorem 2.

Corollary. If the spherical quadrangle $T_{1} T_{4} T_{2} T_{3}$ satisfies the following conditions

$$
\left\{\begin{array}{l}
d_{s}\left(T_{1}, T_{2}\right) \geq d_{s}\left(T_{3}, T_{4}\right) \\
\frac{\pi}{2} \geq d_{s}\left(T_{1}, H\right)=d_{s}\left(H, T_{2}\right)=\frac{d_{s}\left(T_{1}, T_{2}\right)}{2} \geq d_{s}\left(H, T_{3}\right)>0 \\
d_{s}\left(T_{1}, H\right) \geq d_{s}\left(H, T_{4}\right)>0
\end{array}\right.
$$

then the farthest pair of points in the spherical quadrangle $T_{1} T_{4} T_{2} T_{3}$ is the pair of T_{1} and T_{2}.

Proof. Let C^{\prime} be the closed spherical cap whose center is H and whose angular radius is $d_{s}\left(T_{1}, H\right)$. From Theorem 2, the spherical triangle $T_{1} T_{2} T_{3}$ is entirely contained in C^{\prime} and its farthest pair is the pair of T_{1} and T_{2}. Similarly, the spherical triangle $T_{1} T_{4} T_{2}$ is contained in C^{\prime} and its farthest pair is the pair of T_{1} and T_{2}. Therefore, the spherical quadrangle $T_{1} T_{4} T_{2} T_{3}$ is entirely contained in C^{\prime} whose angular diameter is determined by $d_{s}\left(T_{1}, T_{2}\right)$. Thus, the pair of T_{1} and T_{2} is the farthest pair of points in spherical quadrangle $T_{1} T_{4} T_{2} T_{3}$.

Now, we consider the meanings of the upper bounds r_{N} and \bar{r}_{N-1} in an illustrative example. Figure 2 shows the distinction between two upper bounds r_{N} and \bar{r}_{N-1}. In Fig.

Fig. 2. Upper bounds r_{N} and \bar{r}_{N-1}.

2(a), the shaded region is the covered region W_{N-2} and the white region is the uncovered region $\left(W_{N-2}\right)^{c}$. At this time, the shape of $\left(W_{N-2}\right)^{c}$ is the quadrangle $T_{1} T_{4} T_{2} T_{3}$ on S. We note that the sides of uncovered region $\left(W_{N-2}\right)^{c}$ are not geodesic arcs but are perimeters of spherical caps. Here, we suppose that the spherical quadrilateral $T_{1} T_{4} T_{2} T_{3}$ (the quadrilateral enclosed by dotted-and-dashed segments in Fig. 2(a)) satisfies the condition of Corollary of Theorem 2. Then, it is obvious that the quadrangle $T_{1} T_{4} T_{2} T_{3}$ (the quadrangle enclosed by solid segments in Fig. 2(a)) on S is inside the spherical quadrilateral $T_{1} T_{4} T_{2} T_{3}$. Therefore, from Corollary of Theorem 2, we find that the pair of T_{1} and T_{2} is the farthest pair of points in the spherical quadrilateral $T_{1} T_{4} T_{2} T_{3}$ and in the quadrangle $T_{1} T_{4} T_{2} T_{3}$ on S.

Namely, the spherical distance of the largest interval in $\left(W_{N-2}\right)^{c}$ is $d_{s}\left(T_{1}, T_{2}\right)$. Then, when the radii r of $N-1$ spherical caps are all equal to $d_{s}\left(T_{1}, T_{2}\right)$ and the center M_{N-1} is put on T_{1} or T_{2}, the set $\cup_{v=1}^{N-1} C_{v}$ which contains W_{N-2} can cover S except for a point (T_{2} or T_{1}). Therefore, the upper bound, \bar{r}_{N-1}, of r such that the set $\cup_{v=1}^{N-1} C_{v}$ which contains W_{N-2} cannot cover S under the Minkowski condition is $d_{s}\left(T_{1}, T_{2}\right)$. At this time, as shown in Fig. 2(b), if $T_{2} \in \partial C_{N-2}$ is selected as M_{N-1}, the set $\cup_{v=1}^{N-1} C_{v}$ is in an extreme state where T_{1} is the unique uncovered point. Therefore, when M_{N} is put at $T_{1} \in \partial C_{N-1}$, the set $\cup_{v=1}^{N} C_{v}$ which contains W_{N-1} covers S without any gap. Thus, as shown in Fig. 2(c), our upper bound r_{N} is equal to $d_{s}\left(T_{1}, T_{2}\right)$. Namely, in Fig. 2, we see the fact that $r_{N}=\bar{r}_{N-1}=d_{s}\left(T_{1}, T_{2}\right)$.

Here, we note the advantage of using the upper bound \bar{r}_{N-1}. The value of \bar{r}_{N-1} is easier to calculate than r_{N}, since it is better to examine the extreme situation where the spherical surface S cannot be covered by $N-1$ spherical caps than the situation where S is covered by N caps. Then, at the last stage of the process of covering, we only need to observe the situation where a few uncovered regions remain since our covering is sequential. Moreover, the covering of our problem is finished in fact when $N-1$ spherical caps cover S except for a finite number of points or a line segment since open spherical caps are considered. In such a case, as shown in the cases below, the position of the center of the N-th spherical cap is almost unique. Although \bar{r}_{N-1} and r_{N} are not necessarily coincident, the value of \bar{r}_{N-1} will give a strong candidate for r_{N}.

3. Results

3.1. $N=2,3,4,5$ and 6

For cases of $N=2, \ldots, 6$, we find that r_{N} is equal to the upper bound of the range of r for k in Table 1.

For $N=2$, r_{2} (i.e. r_{N} for $N=2$) is equal to π. It is because that the radius of the first spherical cap C_{1} should be equal to $\bar{r}_{1}=\pi$ in order C_{1} to cover the whole S except for a point. From the STEP 1 as described in Subsec. 2.3, the center M_{1} of C_{1} is put at the south pole $(0,0,-1)$. In this case, the north pole $(0,0,1)$ is open for $\bar{r}_{1}=\pi$. Then it is obvious that we can put M_{2}, the center of the second spherical cap C_{2}, at the north pole. At this time, S is covered without any gap by C_{1} and C_{2} which satisfy the Minkowski condition. Thus we see $r_{2}=\bar{r}_{1}=\pi$. We note that this value π is the upper bound of the range of r for $k=1$ as shown in Table 1.

For $N=3, r_{3}$ should be equal to the upper bound of the range of r for $k=2$. It is because that, when $r=2 \pi / 3$, the set $\cup_{v=1}^{2} C_{v}$ under the condition $M_{2} \in \partial C_{1}$ can cover S except for a point. First, let M_{1} be the south pole as described above. Then, if M_{2} is put at the point $(\sin (2 \pi / 3), 0,-\cos (2 \pi / 3))=(\sqrt{3} / 2,0,1 / 2)$ on ∂C_{1}, the unique uncovered point P of S will be $(-\sqrt{3} / 2,0,1 / 2)$. Then, $\cup_{v=1}^{2} C_{v}$ is in an extreme state. Therefore, we get $\bar{r}_{2}=2 \pi / 3$, and we can put the center M_{3} of C_{3} at P. At this time, $\cup_{v=1}^{3} C_{v}$ which contains W_{2} covers the whole of S under the Minkowski condition. It is obvious that the position of centers is the trisection point of a great circle. Thus the correspondent angular radius r_{3} is equal to $2 \pi / 3$.

For $N=4, r_{4}$ should be equal to the upper bound of the range of r for $k=3$. The reason is the following. First, we can assume that M_{3} is put on one of the cross points of perimeters ∂C_{1} and ∂C_{2} under the condition $M_{2} \in \partial C_{1}$. It is because that, from Theorem 1 in Subsec.
2.2, $\cup_{v=1}^{3} C_{v}$ is in an extreme state when $s_{12}=s_{13}=s_{23}=r$. If r is equal to the spherical distance between the cross points of ∂C_{1} and ∂C_{2}, the spherical surface S except for a point is covered by the set W_{3}. As before, let M_{1} be the south pole and let M_{2} be at $(\sin r, 0,-\cos r)$. At this time, let us assume that the angular radius r is equal to the upper bound of the range r for $k=3$ in Table 1. Thus, when $r=\pi-\cos ^{-1}(1 / 3), M_{3}$ is selected as one of the trisection point of ∂C_{1} and let it be $((-1 / 2) \sin r,(-\sqrt{3} / 2) \sin r,-\cos r)=(-\sqrt{2} / 3,-\sqrt{2} / \sqrt{3}, 1 / 3)$. Then, it is easy to see that the point $P=((-1 / 2) \sin r,(\sqrt{3} / 2) \sin r,-\cos r)=(-\sqrt{2} / 3, \sqrt{2} / \sqrt{3}, 1 / 3)$ is the unique uncovered point on S. We note, at the same time, that the coordinates of M_{2} turns out to be $(2 \sqrt{2} / 3,0,1 / 3)$. Therefore, we get $\bar{r}_{3}=\pi-\cos ^{-1}(1 / 3)$, and we can put M_{4} on that point P. As a result, the set $\cup_{v=1}^{4} C_{v}$ which contains W_{3} can cover the whole of S when $r=\bar{r}_{3}$ and we get finally $r_{4}=\pi-\cos ^{-1}(1 / 3)$. Then, we find that the position of centers of these four spherical caps is in accord with the vertices of regular tetrahedron.

For $N=5$, before deriving $r_{5}, \bar{r}_{4}=\pi / 2$ is shown first. When $r=\pi / 2$, from Theorem 1, the centers M_{1}, M_{2}, and M_{3} are put, for example, at $(0,0,-1),(1,0,0)$, and $(0,-1,0)$, respectively, in order for $\cup_{v=1}^{3} C_{v}$ to be in an extreme state. Then, the uncovered region $\left(W_{3}\right)^{c}$ is the spherical equilateral triangle of side-length $\pi / 2$ and vertices $(0,0,1),(-1,0,0)$, and $(0,1,0)$. Therefore, from the discussion in Subsec. 2.4, we find that the largest spherical distance in $\left(W_{3}\right)^{c}$ is equal to $\pi / 2$; namely $\bar{r}_{4}=\pi / 2$. Next, when M_{4} is put on the point $(0,0,1) \in \partial C_{3}$ or $(-1,0,0) \in \partial C_{3}$ (in this paper, we choose $(-1,0,0)$), the set $\cup_{v=1}^{4} C_{v}$ is in an extreme state. As a result, the set W_{4} can cover S except for a line segment which is an inferior great circle connecting $(0,1,0)$ and $(0,0,1)$ and whose length is $\pi / 2$. Therefore, when M_{5} is put at any point on this line segment except for points $(0,1,0)$ and $(0,0,1)$, we find that $\cup_{v=1}^{5} C_{v}$ covers S without gap under the Minkowski condition. Thus, $r_{5}=\bar{r}_{4}=$ $\pi / 2$. Namely, r_{5} is equal to the upper bound of the range of r for $k=4$.

For $N=6$, we can assume that r_{6} is equal to the result of the case $N=5$. First, similar to the case $N=5$, we put the centers of C_{1}, C_{2}, C_{3}, and C_{4} of radius $r=\pi / 2$ at $(0,0,-1)$, $(1,0,0),(0,-1,0)$, and $(-1,0,0)$, respectively. If we put M_{5} on $(0,0,1)$ or $(0,1,0)$ (in the following, we assume $(0,1,0)$ is chosen as M_{5}), the set $\cup_{v=1}^{5} C_{v}$ is in an extreme state and the spherical surface S except for a point, namely the point $(0,0,1)$, can be covered by the set W_{5}. As a result, the set $\cup_{v=1}^{6} C_{v}$ containing W_{5} covers the whole of S when we put M_{6} on (0,01). Thus, our assumption $r_{5}=r_{6}=\pi / 2$ is confirmed. Then, we find that the position of centers of these spherical caps for $N=6$ is in accord with the vertices of regular octahedron. Therefore, if all spherical caps of our covering for $N=6$ are replaced by halfcaps (the spherical cap whose angular radius is $r / 2$ and which is concentric with that of the original cap), all of those half-caps contact other four half-caps and there is no space for those half-caps to move.

3.2. $N=7$

From the considerations for the cases $N \leq 6$ and Subsec. 2.1, we can assume that, for $N=7$, the angular radius r should satisfy the inequalities $\tan ^{-1} 2<r<\pi / 2$. The reason is the following. First, the center M_{1} of the first spherical cap C_{1} is set at the south pole $(0,0,-1)$ as before. Now, we remind the cases of $N \leq 6$ in Subsec. 3.1, in order to investigate the position of centers of spherical caps for $N=7$. For $N=2, M_{2}$ is placed on the perimeter ∂C_{1}. For $N=3, M_{2}$ and M_{3} are both on ∂C_{1}. For $N=4$, the centers M_{2}, M_{3}, and M_{4}, are placed
on ∂C_{1}. For $N=5$ and 6 , there are four centers of other spherical caps on ∂C_{1}. Then, from these facts and from Subsec. 2.1, we can consider two cases for $N=7$ as follows: four centers M_{2}, M_{3}, M_{4}, and M_{5} are on ∂C_{1}; and five centers $M_{2}, M_{3}, M_{4}, M_{5}$, and M_{6} are on ∂C_{1}. For $N=7$, we find that the second case is excluded because of the following reason. When five centers $M_{2}, M_{3}, M_{4}, M_{5}$, and M_{6} are placed on ∂C_{1} according to our sequential covering, the range of angular radius r must be $0<r \leq \tan ^{-1} 2$ from the consideration in Subsec. 2.1. Here, we consider the case that r is equal to $\tan ^{-1} 2 \approx 1.10715$. Then, it is obvious that the spherical distance between $M_{1}:(0,0,-1)$ and any point of the set which is covered by our six spherical caps is smaller than $2 \tan ^{-1} 2$, while the length of longitude line joining south and north poles is larger than $2 \tan ^{-1} 2$. Thus, the union of our six spherical caps would leave a big open area (whose size is at least comparable to the area of spherical cap of angular radius $\pi-2 \tan ^{-1} 2$) near the north pole of the unit sphere. Furthermore, the open area near the north pole would become still bigger for $0<r<\tan ^{-1} 2$. Hence, the set $\cup_{v=1}^{6} C_{v}$ cannot cover S at all. Thus, we should exclude the second case. Therefore, we have to consider the first case that four centers M_{2}, M_{3}, M_{4}, and M_{5} of spherical caps are placed on ∂C_{1}. Then, below, we investigate the range of r under this condition. From the consideration in Subsec. 2.1, when $r \leq \pi / 2$, it is possible to put four spherical caps on the perimeter of a spherical cap. Especially, when the range of r is $\left(\tan ^{-1} 2, \pi / 2\right]$, four spherical caps can be placed on the perimeter of a spherical cap and, at the same time, five spherical caps cannot be placed on the perimeter of a spherical cap. Further, from the setup of our problem, we want to make r the biggest possible. Therefore, we can assume that r is larger than $\tan ^{-1} 2$. On the other hand, if $r \geq \pi / 2$, we cannot cover S by seven spherical caps without breaking the Minkowski condition due to the results of cases $N \leq 6$. Thus, r should be in the range $\tan ^{-1} 2<r<\pi / 2$. We note that the equality sign does not enter in these inequalities.

Let (x, y, z) be the coordinates of cross points where the perimeters of C_{a} (the coordinates of the center: $\left.\left(a_{1}, a_{2}, a_{3}\right)\right)$ and C_{b} (the coordinates of the center: $\left.\left(b_{1}, b_{2}, b_{3}\right)\right)$ intersect. By solving the simultaneous equations

$$
\left\{\begin{array}{l}
a_{1} x+a_{2} y+a_{3} z=\cos r \tag{4}\\
b_{1} x+b_{2} y+b_{3} z=\cos r \\
x^{2}+y^{2}+z^{2}=1
\end{array}\right.
$$

we will have the coordinates of the cross points. Thus, in the case where the centers of two spherical caps are put respectively at $(0,0,-1)$ and $(\sin r, 0,-\cos r)$, we get

$$
\left\{\begin{array}{l}
-z=\cos r \tag{5}\\
\sin r \cdot x-\cos r \cdot z=\cos r \\
x^{2}+y^{2}+z^{2}=1
\end{array}\right.
$$

Let the points $K_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $K_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ be the solutions of simultaneous equation (5). Solving (5), we obtain

Fig. 3. The curve of $A\left(W_{3} \cap C_{4}\right)$ when M_{4} is moved on the $\operatorname{arc} K_{4} K_{2}$ of C_{3}. Here, the arc $K_{4} K_{2}$ is divided into 100 equal intervals and the area $A\left(W_{3} \cap C_{4}\right)$ is calculated on 101 end points of the intervals. Note that the curve of $r \simeq 1.10715$ corresponds to the case of $r=\tan ^{-1} 2$. The values of r of other curves are described in the text.

Fig. 4. The curve of $A\left(\left(W_{4} \cup C_{5}\right)^{c}\right)$ when M_{5} is moved on the arc $K_{6} K_{5}$ of C_{4}. The similar computation method as in Fig. 3 is taken. See the legend in Fig. 3.

$$
\begin{gather*}
\left(x_{1}, y_{1}, z_{1}\right)=\left(-\frac{\cos r(\cos r-1)}{\sin r}, \frac{(\cos r-1) \sqrt{2 \cos r+1}}{\sin r},-\cos r\right) \tag{6}\\
\left(x_{2}, y_{2}, z_{2}\right)=\left(-\frac{\cos r(\cos r-1)}{\sin r},-\frac{(\cos r-1) \sqrt{2 \cos r+1}}{\sin r},-\cos r\right) \tag{7}
\end{gather*}
$$

Here, the center M_{1} of C_{1} is set at the south pole $(0,0,-1)$ as already mentioned. We put the centers M_{2} and M_{3} of C_{2} and C_{3} each, at K_{1} and $(\sin r, 0,-\cos r)$, respectively. Note that K_{1} and K_{2} are the points where the perimeters of C_{3} and C_{1} intersect. We also note here that the locations of centers of the second and the third spherical caps defined as above are different from the cases $N=4,5,6$ because of the convenience of our computation. We will use this convention for all cases of $N \geq 7$ hereafter. Then, taking into account Theorem 1

Fig. 5. The kite $K_{8} K_{4} K_{6} K_{7}$ on unit sphere.
in Subsec. 2.2, $\cup_{v=1}^{3} C_{v}$ is in an extreme state. At this time, similarly, we calculate the points where the perimeters of C_{2} and C_{1} intersect. Among these cross points, let $K_{3}=\left(x_{3}, y_{3}, z_{3}\right)$ be the point which is outside C_{3}. Let $K_{4}=\left(x_{4}, y_{4}, z_{4}\right)$ be one of the cross points between ∂C_{2} and ∂C_{3} and let it not be the south pole $(0,0,-1)$. The explicit expressions of coordinates of cross points K_{3} and K_{4} are shown in Appendix A.1.

Let us place the center M_{4} at K_{4} and move it to K_{2} along the $\operatorname{arc} K_{4} K_{2}$ of C_{3}. We note that, during this movement, the distance s_{43} between M_{4} and M_{3} is equal to the angular radius r and the overlapping area A_{43} of C_{4} and C_{3} is invariant while the area $A\left(W_{3} \cap C_{4}\right)$ is variable. Then, we want to know the position of M_{4} where the area $A\left(W_{3} \cap C_{4}\right)$ is maximum. Therefore, we calculate the area $A\left(W_{3} \cap C_{4}\right)$ against the moving point M_{4} numerically for several fixed values of r among $\tan ^{-1} 2 \leq r<\pi / 2$. In order to use the result later, the computation for $r=\tan ^{-1} 2$ is also performed. The results are shown in Fig. 3. In this figure, the horizontal axis is the position of M_{4} on the $\operatorname{arc} K_{4} K_{2}$ of C_{3} and the vertical axis is the area $A\left(W_{3} \cap C_{4}\right)$. In this computation, the arc $K_{4} K_{2}$ is divided into 100 equal intervals and the area $A\left(W_{3} \cap C_{4}\right)$ is calculated on 101 end points of the intervals. Hereafter, the similar computations are performed for determination of centers of spherical caps (see Figs. 4, 7, and 10). As a result, for the four values of r in Fig. 3, we find that this curve of $A\left(W_{3} \cap C_{4}\right)$ is symmetrical at the center of the arc $K_{4} K_{2}$ (it is evident from the spherical symmetry) and $A\left(W_{3} \cap C_{4}\right)$ is maximum at both ends. The same fact as above would hold for every values of r in the range $\tan ^{-1} 2 \leq r<\pi / 2$. Therefore, we expect that $\cup_{v=1}^{4} C_{v}$ is in an extreme state if and only if M_{4} is put at K_{2} or K_{4} for $\tan ^{-1} 2 \leq r<\pi / 2$. To make sure, we shall check that these points K_{2} and K_{4} satisfy the condition that $\cup_{v=1}^{4} C_{v}$ is in an extreme state after obtaining the exact values of the angular radius r at the last paragraph in this subsection. At the moment, we choose M_{4} on the point K_{2}. Then, let $K_{5}=\left(x_{5}, y_{5}, z_{5}\right)$ be one of the cross points of perimeters ∂C_{4} and ∂C_{1}, and let it be outside C_{3}. Further, let $K_{6}=$ $\left(x_{6}, y_{6}, z_{6}\right)$ be one of the cross points of ∂C_{4} and ∂C_{3}, and let it not be the south pole $(0,0,-1)$. The explicit expressions of cross points K_{5} and K_{6} are given in Appendix A.1.

Next, the center M_{5} is put at a certain point on the $\operatorname{arc} K_{6} K_{5}$ of C_{4}. Then, we need to calculate the area $A\left(W_{4} \cap C_{5}\right)$ when M_{5} is moved on the arc $K_{6} K_{5}$ of C_{4}. However, in order to simplify calculation, we pay attention to the area $A\left(\left(W_{4} \cup C_{5}\right)^{c}\right)$. It is because, for $i \geq 2$, we find the relation that the area $A\left(W_{i-1} \cap C_{i}\right)$ is maximum with the restriction
$M_{i} \in \partial C_{i-1}\left(\cup_{v=1}^{i} C_{v}\right.$ is in an extreme state $)$ is the same as that the area $A\left(\left(W_{i-1} \cup C_{i}\right)^{c}\right)$ is maximum with the restriction $M_{i} \in \partial C_{i-1}$. Therefore, for $i=5$, we calculate $A\left(\left(W_{4} \cup C_{5}\right)^{c}\right)$ against the moving point M_{5} numerically for several fixed values of r among $\tan ^{-1} 2 \leq r<$ $\pi / 2$. Here, the computation is performed as in the determination of M_{4}. Figure 4 shows the results. In this figure, the horizontal axis is the position of M_{5} on the arc $K_{6} K_{5}$ of C_{4} and the vertical axis is the area $A\left(\left(W_{4} \cup C_{5}\right)^{c}\right)$. As a result, for the four values of r in Fig. 4, the curve of $A\left(\left(W_{4} \cup C_{5}\right)^{c}\right)$ is symmetrical at the center of the arc $K_{6} K_{5}$ (it is evident from the spherical symmetry) and $A\left(\left(W_{4} \cup C_{5}\right)^{c}\right)$ is maximum when M_{5} is placed on K_{6} or K_{5}. The same fact as above would hold for every values of r in the range $\tan ^{-1} 2 \leq r<\pi / 2$. Therefore, we expect that $\cup_{v=1}^{5} C_{v}$ is in an extreme state if and only if M_{5} is put at K_{5} or K_{6} for $\tan ^{-1} 2 \leq r<\pi / 2$. To make sure, we shall check whether the points K_{5} and K_{6} are such points after obtaining the exact values of the angular radius r at the last paragraph in this subsection like the case of M_{4}. Here, we choose M_{5} on the point K_{5}. Then, let $K_{7}=\left(x_{7}, y_{7}, z_{7}\right)$ be one of the cross points of the perimeters ∂C_{5} and ∂C_{4}, and let it be outside of C_{1}. Similarly, let $K_{8}=\left(x_{8}, y_{8}\right.$, z_{8}) be one of the cross points of ∂C_{5} and ∂C_{2}, and let it be outside of C_{1}. The exact coordinates of K_{7} and K_{8} are also given in Appendix A.1.

At the time when C_{5} is put on the sphere, the shape of the uncovered region $\left(W_{5}\right)^{c}$ becomes a kite on the unit sphere (see Fig. 5). We note that the sides of the kite $K_{8} K_{4} K_{6} K_{7}$ are not geodesic arcs but are perimeters of spherical caps. Then, we see that there are four centers M_{2}, M_{3}, M_{4}, and M_{5} on the perimeter ∂C_{1}.

From the configuration of the vertices K_{8}, K_{4}, K_{6} and K_{7} of the kite $K_{8} K_{4} K_{6} K_{7}$, for the range $\tan ^{-1} 2 \leq r<\pi / 2$, we find that there hold always the following relations of the spherical distance between each vertices.

$$
\left\{\begin{array}{l}
d_{s}\left(K_{8}, K_{4}\right)=d_{s}\left(K_{8}, K_{7}\right), \tag{8}\\
d_{s}\left(K_{6}, K_{4}\right)=d_{s}\left(K_{6}, K_{7}\right), \\
d_{s}\left(K_{6}, K_{4}\right)<d_{s}\left(K_{8}, K_{4}\right)<d_{s}\left(K_{6}, K_{8}\right), \\
d_{s}\left(K_{6}, K_{4}\right)<d_{s}\left(K_{4}, K_{7}\right)<d_{s}\left(K_{6}, K_{8}\right) .
\end{array}\right.
$$

Note that, as defined in Subsec. 2.2, $d_{s}\left(K_{i}, K_{j}\right)$ is the spherical distance between points $K_{i}=\left(x_{i}, y_{i}, z_{i}\right)$ and $K_{j}=\left(x_{j}, y_{j}, z_{j}\right)$; namely

$$
\begin{equation*}
d_{s}\left(K_{i}, K_{j}\right)=\cos ^{-1}\left(x_{i} \cdot x_{j}+y_{i} \cdot y_{j}+z_{i} \cdot z_{j}\right) \tag{9}
\end{equation*}
$$

Refer to Appendix A. 1 for the explicit coordinates of K_{4}, K_{6}, K_{7}, and K_{8}. We produced the relations (8) by using mathematical software. Especially four inequalities in (8) are obtained numerically.

So far, we have arranged five spherical caps. Next, let us consider the sixth and seventh spherical caps. As mentioned in Subsec. 2.4, if we take the angular radius of spherical caps to be equal to the largest spherical distance in the kite $K_{8} K_{4} K_{6} K_{7}$, the sixth spherical cap C_{6}

Fig. 6. (a) Our sequential covering for $N=7$. (b) Our solution of Tammes problem for $N=7$. Both viewpoints are $(0,0,10)$. In this example, the coordinates of the centers are respectively $(0,0,-1),(0.16977,-0.96282$, $-0.21014),(0.97767,0,-0.21014),(0.16977,0.96282,-0.21014),(-0.91871,0.33438,-0.21014),(-0.55588$, $-0.46644,0.68806)$, and $(0.39850,0.33438,0.85404)$.
can cover the region except for a point in the kite under the Minkowski condition. Therefore, we find that \bar{r}_{6} is the largest spherical distance in the kite. It is obvious that the kite $K_{8} K_{4} K_{6} K_{7}$ on the sphere is inside the spherical quadrilateral $K_{8} K_{4} K_{6} K_{7}$ for fixed vertices K_{8}, K_{4}, K_{6}, and K_{7} (see Fig. 5). From (8) and the coordinates of K_{8}, K_{4}, K_{6}, and K_{7} in Appendix A.1, we find numerically that four vertices of the spherical quadrilateral $K_{8} K_{4} K_{6} K_{7}$ satisfies the relations $d_{s}\left(K_{6}, K_{8}\right)>d_{s}\left(K_{4}, K_{7}\right)$, and $\pi / 2 \geq d_{s}\left(K_{6}, H\right)=d_{s}\left(H, K_{8}\right)=$ $d_{s}\left(K_{6}, K_{8}\right) / 2>d_{s}\left(H, K_{4}\right)=d_{s}\left(H, K_{7}\right)>0$ for $\tan ^{-1} 2 \leq r<\pi / 2$. Note that H is the middle point of the geodesic arc $K_{6} K_{8}$. Therefore, from Corollary of Theorem 2, the farthest pair of points in the spherical quadrilateral $K_{8} K_{4} K_{6} K_{7}$ is the pair of K_{6} and K_{8}; namely $d_{s}\left(K_{6}, K_{8}\right)$ is the largest spherical distance in the kite $K_{8} K_{4} K_{6} K_{7}$ and is equal to \bar{r}_{6}. Then, from (9) and the coordinates of K_{6} and K_{8} in Appendix A.1, we have

$$
\begin{equation*}
r=d_{s}\left(K_{6}, K_{8}\right)=\cos ^{-1}\left(\frac{41 \cos ^{4} r-8 \cos ^{3} r-18 \cos ^{2} r+1}{9 \cos ^{4} r+8 \cos ^{3} r-2 \cos ^{2} r+1}\right) . \tag{10}
\end{equation*}
$$

In addition, we note $K_{8} \in \partial C_{5}$. Thus, $\cup_{v=1}^{6} C_{v}$ is in an extreme state (the set $\cup_{v=1}^{6} C_{v}$ covers S except for the point K_{6}) if and only if M_{6} is put on the point K_{8}. At this time, K_{6} is the unique uncovered point. Equation (10) is solved against r by using mathematical software. As a result, the value of the upper bound for $N=7$ is obtained

$$
\begin{equation*}
r_{7}=\bar{r}_{6}=\cos ^{-1}\left(1-\frac{4}{\sqrt{3}} \cos \left(\frac{7 \pi}{18}\right)\right) \approx 1.35908 \mathrm{rad} . \tag{11}
\end{equation*}
$$

Therefore, when M_{6} and M_{7} are put at K_{8} and K_{6}, respectively, then $\cup_{v=1}^{7} C_{v}$ which contains W_{6} covers the whole of S (see Fig. 6(a)). Namely, our sequential covering for $N=7$ is completed.

Here, we check whether the position of points K_{2} and K_{5} for M_{4} and M_{5} satisfy the condition that $\cup_{v=1}^{4} C_{v}$ and $\cup_{v=1}^{5} C_{v}$ are in an extreme state, respectively. For that purpose,

Fig. 7. The change of $A\left(\left(W_{5} \cup C_{6}\right)^{c}\right)$ when M_{6} is moved on the arc $K_{7} K_{8}$ of C_{5}. The similar computation method as in Fig. 3 is taken. See the legend in Fig. 3.
when r is equal to the value of (11), we examine the position where the area $A\left(W_{i-1} \cap C_{i}\right)$ is maximum with the restriction $M_{i} \in \partial C_{i-1}\left(i=4\right.$ and 5). First, about M_{4}, we calculate numerically the area $A\left(W_{3} \cap C_{4}\right)$ against the moving point M_{4} for $r=$ $\cos ^{-1}(1-(4 / \sqrt{3}) \cos (7 \pi / 18))$. As mentioned above, we checked numerically that $A\left(W_{3} \cap C_{4}\right)$ is maximum with the restriction $M_{4} \in \partial C_{3}\left(\cup_{v=1}^{4} C_{v}\right.$ is in an extreme $)$ if and only if M_{4} is put at K_{2} or K_{4} for $r=\cos ^{-1}(1-(4 / \sqrt{3}) \cos (7 \pi / 18))$. The fact is indicated by the curve of $r \simeq 1.10715$ corresponding to $r=\cos ^{-1}(1-(4 / \sqrt{3}) \cos (7 \pi / 18))$ in Fig. 3. Next, about M_{5}, we use the fact that $A\left(W_{4} \cap C_{5}\right)$ is maximum with the restriction $M_{5} \in \partial C_{4}$ is the same as that $A\left(\left(W_{4} \cup C_{5}\right)^{c}\right)$ is maximum with the restriction $M_{5} \in \partial C_{4}$. As mentioned above, we checked numerically that $A\left(\left(W_{4} \cup C_{5}\right)^{c}\right)$ is maximum with the restriction $M_{5} \in \partial C_{4}\left(\cup_{v=1}^{5} C_{v}\right.$ is in an extreme) if and only if M_{5} is put at K_{5} or K_{6} for $r=\cos ^{-1}(1-(4 / \sqrt{3}) \cos (7 \pi / 18))$. The result is graphically presented by the curve of $r \simeq 1.10715$ corresponding to $r=\cos ^{-1}(1-(4 / \sqrt{3}) \cos (7 \pi / 18))$ in Fig. 4. Thus, our choice for M_{4} and M_{5} is justified.

3.3. $N=8$

It is expected that the solution r_{8} for $N=8$ should not be larger than r_{7}. Then, we assume $r \leq r_{7}$. Further, at the moment, we assume $\tan ^{-1} 2 \leq r$. If our answer for $N=8$ is not obtained by this assumption $\tan ^{-1} 2 \leq r$, we will consider the range of $r<\tan ^{-1} 2$ next. First, as in the case of $N=7$, the centers M_{1}, M_{2}, and M_{3} are placed at $(0,0,-1), K_{1}$, and $(\sin r, 0,-\cos r)$, respectively. Since, from Theorem 1 in Subsec. 2.2, the set $\cup_{v=1}^{3} C_{v}$ is in an extreme state when the centers M_{1}, M_{2}, and M_{3} satisfy the relations $s_{12}=s_{13}=s_{23}=r$. Next, from the considerations for determinations of M_{4} and M_{5} in Subsec. 3.2, we can assume that the allocation of points K_{2} and K_{5} for M_{4} and M_{5} respectively satisfy the condition that $\cup_{v=1}^{4} C_{v}$ and C_{v} each are in an extreme state. To make sure, we shall check that K_{2} and K_{5} are such points after obtaining the exact values of r_{8}. Therefore, we use the same positions of the first five spherical caps for the case $N=7$. When the fifth spherical cap C_{5} is put on the sphere, in the same way as the foregoing Subsection, a quadrilateral kite $K_{8} K_{4} K_{6} K_{7}$ on the sphere might be formed as the uncovered region. Hence, the relations (8) hold.

Next, we search the position of M_{6} which satisfies the condition that the area $A\left(W_{5} \cap C_{6}\right)$ is maximum with the restriction $M_{6} \in \partial C_{5}\left(\cup_{v=1}^{6} C_{v}\right.$ is in an extreme state). From the restriction $M_{6} \in \partial C_{5}, M_{6}$ is put at a certain point on the arc $K_{7} K_{8}$ of C_{5} and, during M_{6} is moved on the arc $K_{7} K_{8}$ of C_{5}, the area $A\left(W_{5} \cap C_{6}\right)$ is calculated. At this time, in order to simplify calculation, we use the relation that the area $A\left(W_{5} \cap C_{6}\right)$ is maximum with the restriction $M_{6} \in \partial C_{5}$ is the same as that the area $A\left(\left(W_{5} \cup C_{6}\right)^{c}\right)$ is maximum with the restriction $M_{6} \in \partial C_{5}$. Hence, we calculate the area $A\left(\left(W_{5} \cup C_{6}\right)^{c}\right)$ against the moving point M_{6} numerically for several fixed values of r among $\tan ^{-1} 2 \leq r<r_{7}$. As a result, for the four values of r in Fig. 7, we find that $A\left(\left(W_{5} \cup C_{6}\right)^{c}\right)$ is maximum when M_{6} is put on K_{8}. Figure 7 shows the graph of computational results. In this figure, the horizontal axis is the position of M_{6} on the arc $K_{7} K_{8}$ of C_{5} and the vertical axis is the area $A\left(\left(W_{5} \cup C_{6}\right)^{c}\right)$. Then, we expect that $\cup_{v=1}^{6} C_{v}$ is in an extreme state if and only if M_{6} is put at K_{8} in the range $\tan ^{-1} 2 \leq r<r_{7}$. We shall check that K_{8} is such a point after obtaining the exact values of the angular radius r as in the cases of M_{4} and M_{5}. We choose here M_{6} on the point K_{8}.

Then, when M_{6} is put at K_{8}, we notice that three cases are possible to be considered for the relation between r and $d_{s}\left(K_{8}, K_{4}\right): r=d_{s}\left(K_{8}, K_{4}\right) ; r<d_{s}\left(K_{8}, K_{4}\right)$; and $r>d_{s}\left(K_{8}, K_{4}\right)$. First, we consider the case $r=d_{s}\left(K_{8}, K_{4}\right)$. From (9) and the coordinates of K_{4} and K_{8} in Appendix A.1, we have

$$
\begin{equation*}
r=d_{s}\left(K_{8}, K_{4}\right)=\cos ^{-1}\left(\frac{16 \cos ^{4} r+\cos ^{3} r-9 \cos ^{2} r-\cos r+1}{9 \cos ^{3} r-\cos ^{2} r-\cos r+1}\right) . \tag{12}
\end{equation*}
$$

Equation (12) is the quartic equation of $\cos r$ and can be solved by using the algebraic formula of Ferrari. As a result, we get the following value of the angular radius r.

$$
\begin{equation*}
r=\cos ^{-1}\left(-\frac{1}{7}+\frac{2 \sqrt{2}}{7}\right) \approx 1.30653 \mathrm{rad} . \tag{13}
\end{equation*}
$$

Then, we find the following relation among $d_{s}\left(K_{8}, K_{4}\right), d_{s}\left(K_{4}, K_{7}\right)$, and r by using mathematical software.

$$
\begin{equation*}
d_{s}\left(K_{4}, K_{7}\right)=d_{s}\left(K_{8}, K_{4}\right)=r . \tag{14}
\end{equation*}
$$

Therefore, from (8) and (14), we see that the spherical triangle $K_{8} K_{4} K_{7}$ is equilateral and the uncovered region $\left(W_{6}\right)^{c}$ is the concave isosceles triangle $K_{4} K_{6} K_{7}$ on S inside the spherical isosceles triangle $K_{4} K_{6} K_{7}$. From the value of (13) and the coordinates of K_{4}, K_{6}, and K_{7} in Appendix A.1, we find that the spherical isosceles triangle $K_{4} K_{6} K_{7}$ satisfies the relations $\pi / 2 \geq d_{s}\left(K_{4}, H\right)=d_{s}\left(H, K_{7}\right)=d_{s}\left(K_{4}, K_{7}\right) / 2 \geq d_{s}\left(H, K_{6}\right)>0$. Note that H is the middle point of the geodesic arc $K_{4} K_{7}$. Therefore, from Theorem 2 in Subsec. 2.4, the largest spherical distance in $\left(W_{6}\right)^{c}$ is $d_{s}\left(K_{4}, K_{7}\right)$. Hence, $\cup_{v=1}^{7} C_{v}$ is in an extreme state (the set $\cup_{v=1}^{7} C_{v}$ covers S except for a point) if and only if $r=d_{s}\left(K_{4}, K_{7}\right)$ and M_{7} is chosen on one of the points K_{7} or K_{4}. Here we put M_{7} on K_{7}; namely the spherical surface S is covered by

Fig. 8. (a) Our sequential covering for $N=8$. (b) Our solution of Tammes problem for $N=8$. Both viewpoints are $(0,0,10)$. In this example, the coordinates of the centers are respectively $(0,0,-1),(0.19992,-0.94435$, $-0.26120),(0.96528,0,-0.26120),(0.19992,0.94435,-0.26120),(-0.88248,0.39116,-0.26120),(-0.68256$, $-0.55319,0.47759),(-0.28273,0.55319,0.78361)$, and $(0.48264,-0.39116,0.78361)$.
the set $\cup_{v=1}^{7} C_{v}$ except for the point K_{4}. Then, from the relation (14), we find $\bar{r}_{7}=$ $\cos ^{-1}(-1 / 7+2 \sqrt{2} / 7)$. Thus, from the fact $K_{7} \in \partial C_{6}$, it is obvious that \bar{r}_{7} is equal to the upper bound r_{8} for $N=8$. Finally, M_{8} is uniquely determined to be the uncovered point K_{4}, and then the whole of S is covered by $\cup_{v=1}^{8} C_{v}$ which contains W_{7} (see Fig. 8(a)).

Next, we consider the other two cases $r<d_{s}\left(K_{8}, K_{4}\right)$ and $r>d_{s}\left(K_{8}, K_{4}\right)$ by way of precaution. Here, we examine the relations among $d_{s}\left(K_{8}, K_{4}\right), d_{s}\left(K_{4}, K_{7}\right)$, and r, and find numerically that the following relations hold by using mathematical software.

$$
\begin{equation*}
\text { For } \tan ^{-1} 2 \leq r<\cos ^{-1}\left(-\frac{1}{7}+\frac{2 \sqrt{2}}{7}\right), d_{s}\left(K_{6}, K_{4}\right) \leq r<d_{s}\left(K_{4}, K_{7}\right)<d_{s}\left(K_{8}, K_{4}\right) \tag{15}
\end{equation*}
$$

For $\cos ^{-1}\left(-\frac{1}{7}+\frac{2 \sqrt{2}}{7}\right)<r<\frac{\pi}{2}, d_{s}\left(K_{8}, K_{4}\right)<d_{s}\left(K_{4}, K_{7}\right)<r$.

In the case (15), since the angular radius r is smaller than $d_{s}\left(K_{8}, K_{4}\right)$, the uncovered region $\left(W_{6}\right)^{c}$ is reduced to the pentagon which is bounded by perimeters of spherical caps and $d_{s}\left(K_{4}, K_{7}\right)$ inside this pentagon is larger than r due to (8) and (15). As was described in Subsec. 2.4, we expect the situation that the set W_{7} covers S except for finite points. Therefore, in the uncovered pentagon $\left(W_{6}\right)^{c}$, we take \bar{r}_{7} to be the spherical distance of the largest interval, such that at least one endpoint of the interval comes on the perimeter ∂C_{6}. However, from the relation (15), we cannot take r to be the largest spherical distance in $\left(W_{6}\right)^{c}$. Further, we find that an uncovered region is left on S when M_{7} is put on the uncovered pentagon $\left(W_{6}\right)^{c}$ according to our sequential covering. Refer to the considerations of determination for M_{7} and the fact that the uncovered region is left when W_{7} is formed on S for $\tan ^{-1} 2 \leq r<\cos ^{-1}(-1 / 7+2 \sqrt{2} / 7)$ in the following Subsections. In the case (16), on the other hand, since the angular radius r is larger than $d_{s}\left(K_{8}, K_{4}\right)$, the uncovered region $\left(W_{6}\right)^{c}$ is reduced to the triangle which is bounded by perimeters of spherical caps and the spherical distance of the largest interval inside this triangle is smaller than r due to (8) and

Fig. 9. The sketch of the kite $K_{8} K_{4} K_{6} K_{7}$ and the spherical rhombus $K_{8} K_{9} K_{6} K_{10}$.
(16). Then, the seventh spherical cap C_{7} covers the uncovered triangle $\left(W_{6}\right)^{c}$ completely when the center M_{7} is put in this triangle. Namely, the center of C_{8} cannot be placed on S under the Minkowski condition. Therefore, in two cases above, the range of r is not suitable for our upper bound.

Now, when r is equal to the value of (13), we check whether the positions of points K_{2}, K_{5}, and K_{8} for M_{4}, M_{5}, and M_{6} satisfy the condition that $\cup_{v=1}^{4} C_{v}, \cup_{v=1}^{5} C_{v}$, and $\cup_{v=1}^{6} C_{v}$ are in an extreme state, respectively. For $i=4,5$, and 6 , as mentioned above, we checked numerically that the points K_{2}, K_{5}, and K_{8} are the positions where the area $A\left(W_{i-1} \cap C_{i}\right)$ (or $\left.A\left(\left(W_{i-1} \cup C_{i}\right)^{c}\right)\right)$ are maximum with the restriction $M_{i} \in \partial C_{i-1}\left(\cup_{v=1}^{i} C_{v}\right.$ is in an extreme state), respectively, when r is equal to $\cos ^{-1}(-1 / 7+2 \sqrt{2} / 7)$. Then, the facts are indicated by the curve of $r \simeq 1.30653$ corresponding to $r=\cos ^{-1}(-1 / 7+2 \sqrt{2} / 7)$ in Figs. 3, 4, and 7. Thus, for the case $N=8$, our choice of M_{4}, M_{5}, and M_{6} is justified.

At the beginning of this subsection, we initially assumed that r should be in the range $\left(\tan ^{-1} 2, r_{7}\right]$. In fact, after the investigation, our upper bound r_{8} (the value of (13)) has fallen within the range $\left(\tan ^{-1} 2, r_{7}\right]$. However, one might suspect that the fact is due to the assumption. So, if r is in the range $\left(0, \tan ^{-1} 2\right]$, we examine whether W_{7} is able to cover S except for finite points. From the results of $r \simeq 1.10715$ in Figs. 3, 4, and 7, we find that the set W_{7} must leave an uncovered region on S when r is equal to $\tan ^{-1} 2 \approx 1.10715$. Therefore, from the setup of our problem, $r=\tan ^{-1} 2$ cannot be r_{8}. Furthermore, for $0<r<\tan ^{-1} 2$, the uncovered region would become still bigger. Thus, our assumption that r_{8} is in the range $\left(\tan ^{-1} 2, r_{7}\right]$ is confirmed $\left(r=\tan ^{-1} 2\right.$ is just excluded from the above consideration) and $\cos ^{-1}(-1 / 7+2 \sqrt{2} / 7)$ is certainly a solution for $N=8$.

3.4. $N=9$

According to the considerations for $N=7$ and 8 , the angular radius for $N=9$ should be smaller than r_{8}. First, at the moment, we expect that the inequalities $\tan ^{-1} 2 \leq r<r_{8}$ hold like the case of $N=8$. Then, the same positional relation of the first five spherical caps for the case of $N=7$ is used again. From Theorem 1 in Subsec. 2.2 and from the considerations for determinations of M_{4} and M_{5} in Subsec. 3.2, we can consider that the set $\cup_{v=1}^{5} C_{v}$ is in an extreme state when the centers $M_{1}, M_{2}, M_{3}, M_{4}$, and M_{5} are placed at the points $(0,0,-1), K_{1},(\sin r, 0,-\cos r), K_{2}$ and K_{5}, respectively. To make sure, after obtaining the exact value of r_{9}, we shall check that the allocations of K_{2} and K_{5} to M_{4} and M_{5}, respectively, satisfy the condition that $\cup_{v=1}^{4} C_{v}$ and $\cup_{v=1}^{5} C_{v}$ are in an extreme state. In the same way as
in Subsec. 3.2, the shape of the set $\left(W_{5}\right)^{c}$ is again the kite $K_{8} K_{4} K_{6} K_{7}$ on the sphere. Then, the relations (8) and (15) hold. We should cover this kite $K_{8} K_{4} K_{6} K_{7}$ except for a point by the set $C_{6} \cup C_{7} \cup C_{8}$ under the conditions $M_{6} \in \partial C_{5}, M_{7} \in \partial C_{6}$, and $M_{8} \in \partial C_{7}$.

From the consideration for determination of M_{6} in Subsec. 3.3, and from the condition that $\cup_{v=1}^{6} C_{v}$ is in an extreme state, we can assume that the center M_{6} is placed on the point K_{8} as in the case of $N=8$. At this time, the uncovered region $\left(W_{6}\right)^{c}$ is reduced to the pentagon which is bounded by perimeters of spherical caps (see Fig. 9). Here, let K_{9} be one of the cross points of the perimeters ∂C_{6} and ∂C_{2}, and let it be outside C_{1}. Further, let K_{10} be one of the cross points of ∂C_{6} and ∂C_{5}, and let it be outside C_{1}. Obviously the relation $d_{s}\left(K_{8}, K_{9}\right)=d_{s}\left(K_{8}, K_{10}\right)$ holds. Now, we want to place three centers of C_{7}, C_{8}, and C_{9} in the uncovered pentagon $K_{9} K_{4} K_{6} K_{7} K_{10}$ under the Minkowski condition. Then, we consider an spherical equilateral triangle of side-length $r=d_{s}\left(K_{8}, K_{9}\right)$ in the pentagon $K_{9} K_{4} K_{6} K_{7} K_{10}$ since three centers M_{7}, M_{8}, and M_{9} could be arranged on the vertices of the spherical equilateral triangle under the Minkowski condition. Therefore, we can assume that K_{9} and K_{10} satisfy

$$
\begin{equation*}
d_{s}\left(K_{8}, K_{9}\right)\left(=d_{s}\left(K_{8}, K_{10}\right)\right)=d_{s}\left(K_{9}, K_{10}\right)=d_{s}\left(K_{6}, K_{9}\right)=d_{s}\left(K_{10}, K_{6}\right) . \tag{17}
\end{equation*}
$$

As shown in Fig. 9, we see the spherical rhombus $K_{8} K_{9} K_{6} K_{10}$ which is formed with two spherical equilateral triangles $K_{8} K_{9} K_{10}$ and $K_{9} K_{6} K_{10}$. If the spherical rhombus $K_{8} K_{9} K_{6} K_{10}$ which satisfies (17) is possible to be formed, we can consider that the angular radius $r_{9}\left(\bar{r}_{8}\right)$ is equal to a side-length (e.g. the spherical distance between the points K_{8} and K_{9}) of the spherical rhombus $K_{8} K_{9} K_{6} K_{10}$ if and only if M_{7} is placed on the point K_{9} or K_{10}. We shall show that this allocation of M_{7} is actually possible, after obtaining the solution r_{9}. Then, due to $d_{s}\left(K_{9}, K_{2}\right)=2 r$ (the proof is given in Appendix A.3), C_{7} is in contact with C_{4} at the point K_{6} and the shape of the uncovered region should be a triangle $K_{10} K_{6} K_{7}$ when M_{7} is placed on the point K_{9}. At this time, we will see later that the side-length of spherical rhombus $K_{8} K_{9} K_{6} K_{10}$ is the largest spherical distance in the uncovered triangular region. Thus, if M_{8} is chosen either on the point K_{6} or K_{10}, the triangle is covered by C_{8} except for a point in the triangle. Note that we supposed that the points K_{8} and K_{9} are the positions such that $\cup_{v=1}^{6} C_{v}$ and $\cup_{v=1}^{7} C_{v}$ are in an extreme state, respectively. However, it is not checked yet that K_{8} and K_{9} are such positions in this step. We shall check these points after obtaining the exact value of r_{9} and the coordinates of K_{9}.

Now we examine whether the point K_{9} or K_{10} which satisfies (17) is possible to exist. To begin with, we calculate the coordinates of the point K_{9}. Since K_{9} is one of the cross points of the perimeters ∂C_{6} and ∂C_{2}, the coordinates of K_{9} can be obtained by using the simultaneous equation (4). Refer to the coordinates of $K_{8}=M_{6}$ in Appendix A. 1 and Eq. (6) (the coordinates of $\left.K_{1}=M_{2}\right)$. The exact coordinates of $K_{9}=\left(x_{9}, y_{9}, z_{9}\right)$ are given in Appendix A.1. From our consideration that $r_{9}\left(\bar{r}_{8}\right)$ is equal to a side-length of spherical rhombus $K_{8} K_{9} K_{6} K_{10}$ which satisfies (17), we will solve the equation

$$
\begin{equation*}
r=d_{s}\left(K_{6}, K_{9}\right)=\cos ^{-1}\left(\frac{\cos r\left(81 \cos ^{4} r-28 \cos ^{3} r-46 \cos ^{2} r-4 \cos r+5\right)}{(\cos r+1)\left(9 \cos ^{3} r-\cos ^{2} r-\cos r+1\right)}\right) \tag{18}
\end{equation*}
$$

Fig. 10. The change of $A\left(\left(W_{6} \cup C_{7}\right)^{c}\right)$ when M_{7} is moved on the arc $K_{10} K_{9}$ of C_{6}. The similar computation method as in Fig. 3 is taken. See the legend in Fig. 3.
against r. By developing Eq. (18), we obtain the quartic equation of $\cos r$. Therefore, (18) can be solved by using the algebraic formula of Ferrari as in the case of $N=8$. As a result, the value of the angular radius r is obtained as

$$
\begin{equation*}
r_{9}=\bar{r}_{8}=\cos ^{-1}\left(\frac{1}{3}\right) \approx 1.23096 \mathrm{rad} . \tag{19}
\end{equation*}
$$

From (19) and the coordinates of K_{6}, K_{8}, K_{9}, and K_{10}, we checked that the relation (17) strictly holds; namely $d_{s}\left(K_{8}, K_{9}\right)=d_{s}\left(K_{8}, K_{10}\right)=d_{s}\left(K_{9}, K_{10}\right)=d_{s}\left(K_{6}, K_{9}\right)=d_{s}\left(K_{10}, K_{6}\right)=$ $\cos ^{-1}(1 / 3)$. Then, K_{10} is obtained by using the fact that it is one of the cross points of the perimeters ∂C_{6} and ∂C_{5}. Note that the coordinates of the point K_{10} are omitted due to their long expressions. As we have noted, we check here whether the positions of the point K_{2}, K_{5}, K_{8}, and K_{9} for M_{4}, M_{5}, M_{6}, and M_{7} satisfy the condition that $\cup_{v=1}^{4} C_{v}, \cup_{v=1}^{5} C_{v}, \cup_{v=1}^{6} C_{v}$, and $\cup_{v=1}^{7} C_{v}$ are in an extreme state, respectively, by using the value of (19). First, we checked numerically that $A\left(W_{i-1} \cap C_{i}\right)\left(\right.$ or $\left.A\left(\left(W_{i-1} \cup C_{i}\right)^{c}\right)\right)$ are maximum when $M_{i}(i=4$, 5 , and 6) are put at K_{2}, K_{5}, and K_{8}, respectively. These facts are indicated by the curve of $r \simeq 1.23096$ corresponding to $r=\cos ^{-1}(1 / 3)$ in Figs. 3, 4, and 7. Therefore, we find numerically that the positions of K_{2}, K_{5}, and K_{8} satisfy the condition that $\cup_{v=1}^{4} C_{v}, \cup_{v=1}^{5} C_{v}$, and $\cup_{v=1}^{6} C_{v}$ are in an extreme state, respectively. Next, we examine the position of M_{7} where the area $A\left(W_{6} \cap C_{7}\right)$ is maximum. Then, in order to simplify calculation, we use the relation that the area $A\left(W_{6} \cap C_{7}\right)$ is maximum with the restriction $M_{7} \in \partial C_{6}$ is the same as that the area $A\left(\left(W_{6} \cup C_{7}\right)^{c}\right)$ is maximum with the restriction $M_{7} \in \partial C_{6}$. Then, we calculate the area $A\left(\left(W_{6} \cup C_{7}\right)^{c}\right)$ against the moving point M_{7} on the arc $K_{10} K_{9}$ of C_{6} numerically for several fixed values of r among $\tan ^{-1} 2 \leq r<r_{8}$. As a result, the curve of $A\left(\left(W_{6} \cup C_{7}\right)^{c}\right)$ is symmetrical at the center of the $\operatorname{arc} K_{10} K_{9}$ (it is evident from the shape of uncovered region $\left.\left(W_{6}\right)^{c}\right)$ and $A\left(\left(W_{6} \cup C_{7}\right)^{c}\right)$ is maximum at both end for the two values of r in Fig. 10. The same fact as above would hold for every values of r in the range $\tan ^{-1} 2 \leq r<r_{8}$. Figure 10 illustrates the result of computation for M_{7}. In this figure, the horizontal axis is the position of M_{7} on the arc $K_{10} K_{9}$ of C_{6} and the vertical axis is the area $A\left(\left(W_{6} \cup C_{7}\right)^{c}\right)$. Then, the result

Fig. 11. (a) Our sequential covering for $N=9$. (b) Our solution of Tammes problem for $N=9$. Both viewpoints are $(0,0,10)$. In this example, the coordinates of the centers are respectively $(0,0,-1),(0.23570,-0.91287$, $-0.33333),(0.94281,0,-0.33333),(0.23570,0.91287,-0.33333),(-0.82496,0.45644,-0.33333),(-0.78567$, $-0.60858,0.11111),(0.15713,-0.60858,0.77778),(0.58926,0.45644,0.66667)$, and $(-0.54997,0.30429$, $0.77778)$.
is graphically presented by the curve of $r \simeq 1.23096$ corresponding to $r=\cos ^{-1}(1 / 3)$ in Fig. 10. Therefore, for $r=\cos ^{-1}(1 / 3)$, we check numerically that $\cup_{v=1}^{7} C_{v}$ are in an extreme state if and only if M_{7} is put at K_{9} or K_{10}.

As mentioned above, in this paper, we put M_{7} at K_{9}. Then, the uncovered region $\left(W_{7}\right)^{c}$ is the triangle $K_{10} K_{6} K_{7}$ on S that satisfies the relations $\pi / 2 \geq d_{s}\left(K_{10}, H\right)=d_{s}\left(H, K_{6}\right)=$ $d_{s}\left(K_{10}, K_{6}\right) / 2 \geq d_{s}\left(H, K_{7}\right)>0$. We note that H is the middle point of the geodesic arc $K_{10} K_{6}$. From Theorem 2 in Subsec. 2.4, the largest spherical distance in $\left(W_{7}\right)^{c}$ is $d_{s}\left(K_{10}, K_{6}\right)$. Namely, we find $\bar{r}_{8}=\cos ^{-1}(1 / 3)$. Hence, if M_{8} is put at K_{10} or K_{6}, the set $\cup_{v=1}^{8} C_{v}$ which contains W_{7} covers the spherical surface S except for a point. Then, due to the facts $K_{6} \in \partial C_{7}$ and $K_{10} \in \partial C_{7}$, we find that $\cup_{v=1}^{8} C_{v}$ is in an extreme state. In this paper, we choose M_{8} on K_{6}.

Then, $\cos ^{-1}(1 / 3)$ satisfies the initial assumption $\tan ^{-1} 2 \leq r<r_{8}$. However, one can suspect this result is owing to the initial assumption. When r is in the range $\left(0, \tan ^{-1} 2\right]$, we check whether W_{8} is able to cover S except for finite points. From the results of $r \simeq 1.10715$ in Figs. 3, 4, 7, and 10, we find the fact that our first to eighth spherical caps must leave an uncovered region on S when r is equal to $\tan ^{-1} 2 \approx 1.10715$. Hence, for $0<r<\tan ^{-1} 2$, the uncovered region would become still bigger. Therefore, our upper bound r_{9} for $N=9$ does not exist in the range $\left(0, \tan ^{-1} 2\right]$ like the case of $N=8$. Thus, we note that $\tan ^{-1} 2<r<r_{8}$ is confirmed ($r=\tan ^{-1} 2$ is just excluded from the above consideration).

Finally, M_{9} is put on the unique uncovered point K_{10}, and then $\cup_{v=1}^{9} C_{v}$ which contains W_{8} covers the whole of S (see Fig. 11(a)). Thus, our consideration that the angular radius $r_{9}\left(\bar{r}_{8}\right)$ is equal to a side-length of spherical rhombus $K_{8} K_{9} K_{6} K_{10}$ which satisfies (17) is confirmed and $\cos ^{-1}(1 / 3)$ is certainly a solution for $N=9$.

4. Conclusion

In Sec. 3, we calculated the upper bound of r for $N=2, \ldots, 9$, such that the set $\cup_{v=1}^{N} C_{v}$ which contains W_{N-1} covers the whole spherical surface S (see Table 2).

Table 2. Upper bound r_{N} of our problem.

Number of spherical caps N	Upper bound of angular radius of our problem
$r_{N}[\mathrm{rad}]$	

It was described, in Subsec. 2.1, that the covering with spherical caps of angular radius r is correspondent with the packing with half-caps (see Subsec. 2.1 for its definition) according to our method that the centers of spherical caps are chosen on the perimeters of other spherical caps under the Minkowski condition. Let us suppose the centers of N halfcaps are placed on the positions of the centers of spherical caps $C_{i}(i=1, \ldots, N)$ which are considered in Sec. 3. At this time, we get the packing with N congruent half-caps (see Figs. $6(\mathrm{~b}), 8(\mathrm{~b})$, and $11(\mathrm{~b}))$. Then, for $N=2, \ldots, 9$, we find that the upper bound of angular radius of our problem with N congruent spherical caps and the value of angular diameter of Tammes problem with N congruent spherical caps are equivalent. In addition, we find that the location of centers of our problem is correspondent with that of the Tammes problem for $N=2, \ldots, 9$, respectively (SchÜtte and Van der Waerden, 1951; Danzer, 1963; Fejes Tóth, 1972).

Accordingly, we find the fact that the results of our problem are coincident with those of Tammes problem about $N=2, \ldots, 9$ at least (Sugimoto and Tanemura, 2002, 2003, 2004). Further, SChÜTTE and VAN DER WAERDEN (1951), and DANZER (1963) have solved the Tammes problem for $N=7,8$, and 9 , through the consideration on irreducible graphs obtained by connecting those points, among N points, whose spherical distance is exactly the minimal distance. Then, after establishing the theorem which states that such irreducible graphs can only have triangles and quadrangles, Schütte, van der Waerden, and Danzer proved and obtained the minimal distance r for respective values of $N=7,8$, and 9 . Further, they need the independent considerations for $N=7,8$, and 9 , respectively (SCHÜTTE and Van der Waerden, 1951; Danzer, 1963; Fejes Tóth, 1972). In contrast to this, we presented in this paper a systematic method which is different from the approach by Schütte, van der Waerden, and Danzer. Namely, as shown in Subsec. 2.4 and Sec. 3, our method is able to obtain a solution for N by using the results for the case $N-1$ or $N-2$ successively. In addition, in this study, we have considered the packing problem from the standpoint of sequential covering. The advantages of our approach are that we only need to observe uncovered region in the process of packing and that this uncovered region decreases step by step as the packing proceeds. At least, in the cases of $N \leq 9$, the solutions
of Tammes problem can be found by our method. However, we may say that our method has not necessarily given a mathematical rigorous proof about our result.

In this paper, we used the mathematical software, Maple*, which is capable of manipulating complicate algebraic expressions exactly and is also useful for numerical computations. Consequently, we were able to calculate strict coordinates and solutions.

Here, we remark on the efficiency of covering. Now, let us define the efficiency of covering on spherical surface by (area of $S) /(N \times(\operatorname{area}$ of a cap $))=2 /(N \times(1-\cos r))$. Then, from the value of r_{N} and from the positions of $C_{i}(i=1, \ldots, N)$, it appears that our solutions of $N=2, \ldots, 9$ give the worst efficient covering of S with N congruent spherical caps under the Minkowski condition respectively. At least, from Lemma and Theorem in Subsec. 2.2, it is obvious that our solutions r_{2} and r_{3} for $N=2$ and 3, respectively, give the worst efficient covering under the Minkowski condition. Namely, our results $r_{2}=\pi$ and $r_{3}=2 \pi / 3$ respectively give the efficiency of covering $1 / 2$ and $4 / 9$ (SUGIMOTO and TANEMURA, 2004). However, its proof for other values of N is still open and it is taken as a future subject.

The authors would like to thank Prof. L. Danzer, Univ. of Dortmund, and Prof. H. Maehara, Univ. of Ryukyu, for their helpful comments. The research was partly supported by the Grant-in-Aid for Scientific Research (the Grant-in-Aid for JSPS Fellows) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan.

Appendix A.1: The Coordinates of the Point $K_{i}(i=3,4,5,6,7,8$ and 9$)$
In the following, $r\left(\tan ^{-1} 2 \leq r \leq \pi / 2\right)$ is the angular radius.
$K_{3}=\left(x_{3}, y_{3}, z_{3}\right):$

$$
\left(\frac{\sin r\left(\cos ^{2} r-2 \cos r-1\right)}{(\cos r+1)^{2}},-\frac{2 \cos r \sin r \sqrt{2 \cos r+1}}{(\cos r+1)^{2}},-\cos r\right)
$$

$K_{4}=\left(x_{4}, y_{4}, z_{4}\right):$

$$
\left(\frac{2 \cos r \sin r(2 \cos r+1)}{(\cos r+1)^{2}},-\frac{2 \cos r \sin r \sqrt{2 \cos r+1}}{(\cos r+1)^{2}},-\frac{4 \cos ^{2} r-\cos r-1}{\cos r+1}\right)
$$

$K_{5}=\left(x_{5}, y_{5}, z_{5}\right):$

$$
\left(\frac{\sin r\left(\cos ^{2} r-2 \cos r-1\right)}{(\cos r+1)^{2}}, \frac{2 \cos r \sin r \sqrt{2 \cos r+1}}{(\cos r+1)^{2}},-\cos r\right)
$$

[^0]$K_{6}=\left(x_{6}, y_{6}, z_{6}\right):$
$$
\left(\frac{2 \cos r \sin r(2 \cos r+1)}{(\cos r+1)^{2}}, \frac{2 \cos r \sin r \sqrt{2 \cos r+1}}{(\cos r+1)^{2}},-\frac{4 \cos ^{2} r-\cos r-1}{\cos r+1}\right) .
$$
$K_{7}=\left(x_{7}, y_{7}, z_{7}\right):$
$$
\left(\frac{2 \cos r \sin r(2 \cos r+1)(\cos r-1)}{(\cos r+1)^{3}}, \frac{2 \cos r \sin r(3 \cos r+1) \sqrt{2 \cos r+1}}{(\cos r+1)^{3}},-\frac{4 \cos ^{2} r-\cos r-1}{\cos r+1}\right) .
$$
$K_{8}=\left(x_{8}, y_{8}, z_{8}\right):$
\[

$$
\begin{aligned}
& \left(\frac{2 \cos r \sin r(\cos r-1)(2 \cos r+1)}{9 \cos ^{3} r-\cos ^{2} r-\cos r+1}, \frac{2 \cos r \sin r(\cos r-1) \sqrt{2 \cos r+1}}{9 \cos ^{3} r-\cos ^{2} r-\cos r+1},\right. \\
& \left.-\frac{4 \cos ^{4} r-\cos ^{3} r+5 \cos ^{2} r+\cos r-1}{9 \cos ^{3} r-\cos ^{2} r-\cos r+1}\right) .
\end{aligned}
$$
\]

$K_{9}=\left(x_{9}, y_{9}, z_{9}\right):$

$$
\begin{aligned}
& \left(\frac{\sin r\left(\cos ^{3} r-5 \cos ^{2} r-\cos r+1\right)}{9 \cos ^{3} r-\cos ^{2} r-\cos r+1},-\frac{4 \sin r \cos ^{2} r \sqrt{2 \cos r+1}}{9 \cos ^{3} r-\cos ^{2} r-\cos r+1},\right. \\
& \left.-\frac{\cos r\left(\cos ^{3} r+11 \cos ^{2} r-\cos r-3\right)}{9 \cos ^{3} r-\cos ^{2} r-\cos r+1}\right) .
\end{aligned}
$$

Appendix A.2: The Overlapping Area of Two Congruent Spherical Caps
We give the overlapping area $A_{i j}$ of two congruent spherical caps C_{i} and C_{j} of angular radius r, where their centers are M_{i} and M_{j}, respectively (see Fig. A1). We denote by $s_{i j}$ the spherical distance between M_{i} and M_{j} and we assume $r \leq s_{i j} \leq 2 r$. Then, let us assume G be the middle point of the geodesic arc $M_{i} M_{j}$. Further, we define T_{1} and T_{2} as the two cross points of perimeters ∂C_{i} and ∂C_{j}. Thus, the spherical distance $h_{i j}$ between T_{1} and T_{2} is expressed by using the spherical cosine formula about a spherical right triangle $M_{i} G T_{1}$ as follows:

$$
h_{i j}=2 \cos ^{-1}\left(\frac{\cos r}{\cos \left(s_{i j} / 2\right)}\right) \text {. }
$$

Fig. A1. Overlapping area $A_{i j}$.

If the points M_{i}, T_{1} and T_{2} are mutually connected by geodesic arcs, there arises a spherical isosceles triangle $M_{i} T_{1} T_{2}$ on the unit sphere. Then, let λ and μ be the interior angles at vertices M_{i} and $T_{1}\left(T_{2}\right)$ of this triangle, respectively. By the spherical cosine theorem, we have

$$
\lambda=\cos ^{-1}\left(\frac{\cos h_{i j}-\cos ^{2} r}{\sin ^{2} r}\right), \quad \mu=\cos ^{-1}\left(\frac{1-\cos h_{i j}}{\tan r \cdot \sin h_{i j}}\right) .
$$

Then the area A_{1} of the spherical isosceles triangle $M_{i} T_{1} T_{2}$ turns out

$$
A_{1}=\lambda+2 \mu-\pi=\cos ^{-1}\left(\frac{\cos h_{i j}-\cos ^{2} r}{\sin ^{2} r}\right)+2 \cos ^{-1}\left(\frac{1-\cos h_{i j}}{\tan r \cdot \sin h_{i j}}\right)-\pi .
$$

On the other hand, the area of a spherical cap of the angular radius r is $|C|=2 \pi(1-\cos r)$. Therefore the area A_{2} of a sector with angle λ of the spherical cap is equal to $|C| \cdot \lambda / 2 \pi$, namely

$$
A_{2}=\cos ^{-1}\left(\frac{\cos h_{i j}-\cos ^{2} r}{\sin ^{2} r}\right) \cdot(1-\cos r)
$$

Thus the overlapping area $A_{i j}$ of C_{i} and C_{j} is

$$
A_{i j}=2\left(A_{2}-A_{1}\right)=-2 \cos ^{-1}\left(\frac{\cos h_{i j}-\cos ^{2} r}{\sin ^{2} r}\right) \cdot \cos r-4 \cos ^{-1}\left(\frac{1-\cos h_{i j}}{\tan r \cdot \sin h_{i j}}\right)+2 \pi .
$$

Fig. A2. The sketch of the kite $K_{8} K_{4} K_{6} K_{7}$ and three spherical equilateral triangles $K_{8} K_{9} K_{10}, K_{9} K_{6} K_{10}$, and $K_{6} K_{3} K_{2}$ in the pentagon $K_{8} K_{4} K_{3} K_{2} K_{7}$ on S.

Appendix A.3: The Proof of $d_{s}\left(K_{9}, K_{2}\right)=2 r$ for $N=9$
For $N=9$, the first five centers $M_{1}, M_{2}, M_{3}, M_{4}$, and M_{5} are placed at the points $(0,0,-1), K_{1},(\sin r, 0,-\cos r), K_{2}$ and K_{5}, respectively, in order to satisfy the condition that the set $\cup_{v=1}^{5} C_{v}$ is in an extreme state. Then, the shape of the set $\left(W_{5}\right)^{c}$ is the kite $K_{8} K_{4} K_{6} K_{7}$ on the sphere (see Fig. A2). We note that the sides of the kite $K_{8} K_{4} K_{6} K_{7}$ are not geodesic arcs but are perimeters of spherical caps. Next, we assume that $K_{9} \in \partial C_{2}$ and $K_{10} \in \partial C_{5}$ satisfy the relations (17). In order to prove the relation $d_{s}\left(K_{9}, K_{2}\right)=2 r$, we first note that $K_{4}, K_{6}, K_{2} \in \partial C_{3}$ and $K_{7}, K_{6}, M_{3} \in \partial C_{4}$. Then, obviously the relations $r=d_{s}\left(K_{7}, K_{2}\right)=$ $d_{s}\left(K_{2}, K_{6}\right)=d_{s}\left(K_{2}, M_{3}\right)=d_{s}\left(K_{6}, M_{3}\right)=d_{s}\left(M_{3}, K_{4}\right)$ hold. As shown in Fig. A2, we see the pentagon $K_{8} K_{4} M_{3} K_{2} K_{7}$ on S contains the kite $K_{8} K_{4} K_{6} K_{7}$ and three spherical equilateral triangles $K_{8} K_{9} K_{10}, K_{9} K_{6} K_{10}$, and $K_{6} M_{3} K_{2}$. Note that our pentagon $K_{8} K_{4} M_{3} K_{2} K_{7}$ is not a spherical pentagon since the sides $K_{8} K_{4}$ and $K_{8} K_{7}$ are perimeters of spherical caps. Here, let G be the middle point of the geodesic arc $M_{3} K_{2}$. Next, let q denote the great circle determined by K_{8} and G. Then, from the relations (8), (17), and $r=d_{s}\left(K_{7}, K_{2}\right)=d_{s}\left(K_{2}, K_{6}\right)$ $=d_{s}\left(K_{2}, M_{3}\right)=d_{s}\left(K_{6}, M_{3}\right)=d_{s}\left(M_{3}, K_{4}\right)$, the pentagon $K_{8} K_{4} M_{3} K_{2} K_{7}$ and three spherical equilateral triangles $K_{8} K_{9} K_{10}, K_{9} K_{6} K_{10}$, and $K_{6} M_{3} K_{2}$ are symmetrical by reflection with respect to q. Accordingly, the great circle q is the mirror arc reflecting K_{9} to K_{10}, K_{4} to K_{7}, and M_{3} to K_{2}, respectively. In addition, we see that K_{6} is on q. Therefore, K_{9}, K_{6}, and K_{2} are on one great circle. Thus, $d_{s}\left(K_{9}, K_{2}\right)=d_{s}\left(K_{9}, K_{6}\right)+d_{s}\left(K_{6}, K_{2}\right)=r+r=2 r$ holds.

REFERENCES

DANZER, L. (1963) Endliche Punktmengen auf der 2-Sphäre mit möglichst großen Minimalabstand, Universität Göttingen. (Finite point-set on S^{2} with minimum distance as large as possible, Discrete Mathematics, $\mathbf{6 0}$, 3-66, 1986.)
Fejes Tóth, G. (1969) Kreisüberdeckungen der Sphäre, Studia Scientiarum Mathematicarum Hungarica, 4, 225-247.
Fejes Tóth, L. (1972) Lagerungen in der Ebene, auf der Kugel und im Raum, 2nd Ed., Springer-Verlag, Heidelberg.
Fejes Tóth, L. (1999) Minkowski circle packings on the sphere, Discrete \& Computational Geometry, 22, 161166.

Schütte, K. and van der Waerden, B. L. (1951) Auf welcher Kugel haben 5, 6, 7, 8, oder 9 Punkte mit Mindestabstand Eins Platz?, Mathematische Annalen, 123, 96-124.
Sugimoto, T. (2002) Study of random sequential covering on sphere, Doctor Thesis, The Graduate University for Advanced Studies (in Japanese).
Sugimoto, T. and Tanemura, M. (2001) Covering of a Sphere with Congruent Spherical Caps under the Condition of Minkowski Set of Centers, Research Memorandum, ISM, 817.
Sugimoto, T. and Tanemura, M. (2002) Sphere Covering under the Minkowski Condition, Research Memorandum, ISM, 857.
Sugimoto, T. and Tanemura, M. (2003) Packing and Minkowski covering of congruent spherical caps on a sphere, Research Memorandum, ISM, 901.
Sugimoto, T. and Tanemura, M. (2004) Packing and Covering of Congruent Spherical Caps on a Sphere, Symmetry: Art and Science-2004, ISIS-Symmetry, 230-233.
Teshima, Y. and Ogawa, T. (2000) Dense packing of equal circle on a sphere by the minimum-zenith method: Symmetrical arrangement, Forma, 15, 347-364.

[^0]: *Maple is a trademark of Waterloo Maple Inc., Canada.

