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Abstract.  This paper considers different mirror curves with the maximal number of
mirrors, resulting in self-avoiding curves. They are enumerated and represented by
corresponding chord diagrams. Their connection with knot theory is also considered.

This work is inspired by a series of sculptures titled Viae Globi, created by Carlo
Sequin (Fig. 1) (SEQUIN, 2001), and by a conversation with Haresh Lalvani, who proposed
to collapse vertices of a polygon, in particular two vertices of a triangle in order to obtain
“a triangle with two vertices” (Fig. 2). This simple idea is a part of his more extended
unpublished work. Generalizing this idea, we can conclude that every knot or link shadow
with n crossings is an 2n-gon with n pairs of collapsed points.

The paper deals with graphs where all nodes are of the valence 4. One easy way to
obtain such graphs is to draw one or more, self- and mutually intersecting closed curves,
– or by projecting a knot or link (KL) into a plane. The paper now deals with these projected
curves or shadows, trying to find an Eulerian path that visits all edges exactly once, but that
never crosses itself.

If we put a two-sided mirror in every vertex of a KL shadow (ADAMS, 1994), by a
suitable choice of mirror positions, we can obtain a single closed mirror curve (JABLAN,
2001). The choice of mirror positions is made according to the rules for obtaining a single
mirror curve. This kind of mirror curve is a self-avoiding path, dividing the plane R2 or
sphere surface S2 into two regions (interior and exterior). On a sphere, those two regions
are equivalent.

Figure 3 shows two self-avoiding curves derived from the edge figure of an octahedron
(that from knot theory point of view represents a shadow of Borromean rings), and a self-
avoiding curve derived from the fullerene C60 by the mid-edge truncation. The number of
mirrors of each kind necessary to convert any minimal KL shadow of a given KL into a self-
avoiding curve is an invariant of the KL. For both self-avoiding curves derived from
Borromean rings, the corresponding number of mirrors is {3, 3} (3 internal and 3 external
mirrors).



6 S. JABLAN and R. SAZDANOVIC

If we denote mirror points of a self-avoiding curve by 1, 2, ..., 2n, we conclude that
every self-avoiding curve is an 2n-gon with n pairs of combined points. In order to avoid
loops, we never collapse adjacent points. If we denote points belonging to internal mirrors
by overlined numbers, and underline numbers belonging to external mirrors, the first self-
avoiding curve (Fig. 4) can be denoted by the code 1 , 2, 3, 4 , 5 , 6, 7, 8 , 9 , 10, 11, 12 .

Analogously to Gauss codes of KLs (MURASUGI, 1996), this code will depend on a
beginning point and orientation. Hence, several codes can be assigned to every self-
avoiding curve and we can choose the minimal one as a representative. If we think of the
exterior and interior of a curve as equivalent, then a code and its dual (the code with inverted
overlinings and underlinings) are considered to be the same. In the same way as with Gauss
and Dowker codes (ADAMS, 1994; MURASUGI, 1996), the proposed codes for self-avoiding
curves can be written in a more concise form. First, we can write our code as a sorted list
of ordered pairs {{ 1 , 4},{2, 11},{3, 6},{ 5 , 8},{7, 10}, { 9 , 12 }}. If we agree to replace
every pair of overlined numbers by the same numbers without overlinings, to replace every

Fig. 1.  Sculpture “Lombard” by Carlo Sequin.

Fig. 2.  Triangle with two vertices.
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pair of underlined numbers by those numbers in opposite (descending) order, and sort the
obtained list, the result is the list {{1, 4},{5, 8},{6, 3},{9, 12},{10, 7},{11, 2}}. The list
of second elements in each pair gives the short code {4, 8, 3, 12, 7, 2}. The complete code
can be easily restored from the short code, knowing that the first parts of the ordered pairs
are ordered numbers from the set {1, 2, ..., 12}, not belonging to the set {4, 8, 3, 12, 7, 2},
i.e., the numbers {1, 5, 6, 9, 10, 11}. A different agreement: replacing every pair of
overlined numbers by those numbers in opposite (descending) order, every pair of
underlined numbers by the same pair of numbers and sort the obtained list, gives the dual
list {{2, 11},{3, 6},{4, 1},{7, 10},{8, 5},{12, 9}}, and the dual short code {11, 6, 1, 10,
5, 9}.

Every self-avoiding curve can be graphically interpreted by a chord diagram: a regular

Fig. 3.  (a) Two self-avoiding curves derived from the edge figure of an octahedron, that from knot theory point
of view represents shadow of Borromean rings; (b) self-avoiding curve derived from the fullerene C60 by
mid-edge truncation.

Fig. 4.  (a) Coding of the first self-avoiding curve from Fig. 3a and its chord diagram; (b) chord diagram of the
second self-avoiding curve from Fig. 3a and its dual.
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2n-gon, where points belonging to internal mirrors are connected by full, and points
belonging to external mirrors by broken diagonal lines (or by black and white lines). For
example, the first self-avoiding curve from Fig. 3a will be described by the chord diagram
from Fig. 4a, or by its dual obtained by inverse bicoloring, where full (black) lines are
replaced by broken (white) lines and vice versa. In the both cases (Fig. 4) chord diagrams
are equal to their duals, i.e., they are self-dual. From every chord diagram we can easily
obtain a code of the corresponding self-avoiding curve and vice versa, and to recover an
original KL from which that curve is derived. This is illustrated in Fig. 5, where two stages
of the recovering are shown.

In order to derive and enumerate all self-avoiding curves with n mirrors, one should
first derive all different non-colored chord diagrams, and then impose the appropriate
coloring. The following rule holds for non-colored chord diagrams: every vertex belongs
to exactly one diagonal (chord). In fact, we are searching for all different minimal sets of
diagonals that span a regular 2n-gon, where sets that can be obtained one from another by
symmetries of 2n-gon are considered to be the same. For n = 2, 3, ..., 7 we obtain,
respectively 1, 2, 7, 29, 176, 1788 such different sets. The sequence obtained is A003437
from the On-line encyclopedia of integer sequences (http://www.research.att.com/~njas/
sequences/), that represents the number of unlabeled Hamiltonian circuits on n-octahedron
(SINGMASTER, 1975). An n-octahedron is the complete n-partite graph K2, 2,..., 2 (n pairs of
opposite vertices with edges connecting each vertex to every other vertex except its
opposite). D. Singmaster notes that such a Hamiltonian cycle can be viewed as a way of
seating n couples around a circular table so that no man is next to his wife. The number of
cases is given by the formula
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Chord diagrams derived for n = 2, 3, 4 are given in Fig. 6. Among all chord diagrams
we can distinguish 2-vertex connected graphs (containing the edges of an 2n-gon as well),
corresponding to non-prime KLs, and others, 3-connected, corresponding to prime KLs.

Fig. 5.  Recovering of self-avoiding curve from its chord diagram.
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For coloring of chord diagrams we have the rule: every two diagonals crossing each
other must have different colors. A chord diagram will be colorable iff it is planar. The
other, purely visual, criterion for colorability is the following: a chord diagram is colorable
iff crossings of its diagonals do not form a polygon with an odd number of edges, and three
or more diagonals have not a common point (Fig. 7). Coloring of a (colorable) chord
diagram represents a projection of a polyhedron enclosed in an 2n-gon, with proper
visibility of all edges.

Fig. 6.  Chord diagrams for n = 2, 3, 4.

Fig. 7.  Non-colorable chord diagrams.
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In the case of 2-vertex connected chord diagrams, coloring is not unique: from the
same uncolored chord diagram we can obtain several different colored diagrams (Fig. 6).
KL shadows, their corresponding self-avoiding curves and colored chord diagrams for n =
2, 3, 4 are given in Fig. 8. In the case of 3-vertex connected chord diagrams, a coloring is
completely forced by the coloring of one edge: by choosing its color we can obtain only one
colored chord diagram, or its dual. Hence, in the case of 3-vertex connected planar
diagrams, an uncolored chord diagram provides complete information about the

Fig. 8.  KL shadows, self-avoiding curves, and colored chord diagrams obtained for n = 5.

Fig. 9.  (a) Uncolored chord diagram and its bicoloring; (b)–(e) reconstruction of its corresponding self-avoiding
curve; (f) the corresponding KL shadow.
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Fig. 10.  Three pairs of equal self-avoiding curves (a) shown as shapes (b) and their chord diagrams (c).

corresponding self-avoiding curve. Every uncolored chord diagram can be given as a list
of unordered pairs of numbers denoting chords. For example, the uncolored chord diagram
from Fig. 9a can be denoted as {{1, 3},{2, 6},{4, 9},{5, 8},{7, 10}}. The same figure
illustrates its bicoloring (a), the reconstruction of its corresponding self-avoiding curve
(b)–(e), and KL shadow obtained (f).

By restricting our attention to 3-vertex connected planar chord diagrams corresponding
to prime KLs, for n = 2, 3, ..., 8 we obtain, respectively, 1, 1, 3, 7, 33, 148, 923 chord
diagrams corresponding to self-avoiding curves derived from prime KLs. For n = 2 we have
one chord diagram {{1, 3},{2, 4}}, and for n = 3 one diagram {{1, 3},{2, 5},{4, 6}}. For
n = 3 there are three diagrams: {{1, 3},{2, 5},{4, 7},{6, 8}}, {{1, 3},{2, 6}, {4, 8},{5, 7}},
and {{1, 4},{2, 7},{3, 6},{5, 8}}.

For n = 5, the seven chord diagrams are: {{1, 3},{2, 5},{4, 7},{6, 9},{8, 10}}, {{1,
3},{2, 5},{4, 8},{6, 10}, {7, 9}},{{1, 3},{2, 5},{4, 9},{6, 8},{7, 10}},{{1, 3},{2, 6},{4,
9},{5, 7},{8, 10}},{{1, 3},{2, 6},{4, 9},{5, 8}, {7, 10}}, {{1, 3},{2, 7},{4, 10},{5, 9},{6,
8}}, and {{1, 4},{2, 8},{3, 7},{5, 10},{6, 9}}.

For n = 6, there are thirty three such diagrams and their corresponding self-avoiding
curves. Different shadows of the same KL can give different self-avoiding curves, as in the
case of the link 2 2 2.

Visual recognition of self-avoiding curves, either direct or from shapes (Fig. 10b), is
complicated even for a small number of mirrors, but it is almost immediate from chord
diagrams (Fig. 10c).

It is interesting to mention a possible connection between shapes originating from
self-avoiding curves and some biological forms.

From every KL shadow can be derived one or several self-avoiding curves. Some
conclusions about original KLs can be made based on the chord diagrams of those self-
avoiding curves. For example, to every diagonal connecting two vertices separated by one
vertex, and to every pair of parallel adjacent diagonals corresponds a digon in the original
KL shadow; diagrams without them correspond to basic polyhedra. This way, we can
follow a process of digon collapsing directly in chord diagrams.

Among all chord diagrams, we can distinguish antisymmetrical diagrams that remain
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unchanged by opposite coloring of chords. With regard to self-avoiding curves, this means
that the external region is equal to the internal one. Such diagrams are self-dual. For
example, for n = 6, eleven among 33 chord diagrams are self-dual.

Again, families of KLs play important role as before, followed by families of chord
diagrams and self-avoiding curves derived from them. Chord diagrams belonging to a same
family can be visually recognized (Fig. 11).

Self-avoiding curves can be embedded on different surfaces, so together with Viae
Globi on a sphere S3, we can consider Viae Tori on a torus (later introduced in analogy to
Sequin’s Viae Globi), or on any other surface (Fig. 12).

The function fDiffViae from the knot theory computer program LinKnot (JABLAN and
SAZDANOVI, 2006) for a given number n derives all different self-avoiding curves with n
mirrors that can be obtained from prime KLs with n crossings. For every such curve given

Fig. 12.  Via tori that can be obtained by identifying opposite sides of the rectangle.

Fig. 11.  Families of chord diagrams and self-avoiding curves.
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by its (uncolored) chord diagram we can find its basic prime KL by using the LinKnot
function fViaToKL.
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