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Abstract.  Let Ci (i = 1, ..., N) be the i-th open spherical cap of angular radius r and let Mi

be its center under the condition that none of the spherical caps contains the center of
another one in its interior. We consider the upper bound, rN, (not the lower bound!) of r
of the case in which the whole spherical surface of a unit sphere is completely covered
with N congruent open spherical caps under the condition, sequentially for i = 2, ...,
N – 1, that Mi is set on the perimeter of Ci–1, and that each area of the set (  �ν=

−
1

1i Cν) � Ci

becomes maximum. In this paper, for N = 10, 11, and, 12, we found out that the solutions
of our sequential covering and the solutions of the Tammes problem were strictly
correspondent. Especially, we succeeded to obtain the exact closed form of r10 for N = 10.

1.  Introduction

The circle on the surface of a sphere is called a spherical cap. Among the problems of
packing on the spherical surface, the closest packing of congruent spherical caps is the most
famous, and is usually known as the Tammes problem (TAMMES, 1930). So far, the
mathematically proved solution of Tammes problem were given for N = 1, ..., 12, and 24
(SCHÜTTE and VAN DER WAERDEN, 1951; DANZER, 1963; FEJES TÓTH, 1972). The exact
closed form of solution in the cases for N = 1, ..., 9, 11, 12, and 24 are known, but in the
case for N = 10, the solution was only known in the rage [1.154479, 1.154480] by DANZER

(1963).
In our study, the condition that none of spherical caps contains the center of another

one in its interior is called “Minkowski condition” (SUGIMOTO and TANEMURA, 2003,
2004, 2006). Let Ci be the i-th open spherical cap of angular radius r and let Mi be its center
under the Minkowski condition (i = 1, ..., N). Then, our problem is as follows; the whole
spherical surface of a unit sphere is completely covered with N congruent open spherical
caps under the condition, sequentially for i = 2, ..., N – 1, that Mi is set on the perimeter of
Ci–1, and that each area of the set (  �ν =

−
1

1i Cν) � Ci becomes maximum. That is, our problem
is to calculate the upper bound of r for our sequential covering. In our previous paper
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(SUGIMOTO and TANEMURA, 2006; hereafter, we refer it as I), we calculated the upper
bounds for N = 2, ..., 9. Here, we define a “half-cap” as the spherical cap whose angular
radius is r/2 and which is concentric with the original cap. If the centers of N half-caps are
placed on the positions of the centers of Ci (i = 1, ..., N), we get the packing with N congruent
half-caps. Then, for N = 2, ..., 9, we found that the upper bound of our problem with N
congruent spherical caps and the value of angular diameter of the Tammes problem are
equivalent, and that the location of centers of our problem is correspondent to that of the
Tammes problem (SUGIMOTO and TANEMURA, 2003, 2004, 2006). Further, it should be
said that our method is a systematic and a different approach to the Tammes problem from
the works by SCHÜTTE and VAN DER WAERDEN (1951), etc.

In this paper, we calculate the upper bounds of r for N = 10, 11, and 12 theoretically
by using our sequential covering procedure. As a result, for N = 10, 11, and 12, we found
out that the solutions of our sequential covering and the solutions of the Tammes problem
were strictly correspondent as the cases of N = 2, ..., 9. Especially, the exact closed form
for N = 10 is obtained (see Eq. (10)). Further, we presented a systematic method which is
different from the approach of DANZER (1963).

2.  Preparations

2.1.  Overlapping area and union Wi
Throughout this paper we assume that the center of the unit sphere is the origin O =

(0, 0, 0) and represent the surface of this unit sphere by the symbol S. In the following, open
spherical caps are simply written as spherical caps unless otherwise stated. We define the
geodesic arc between an arbitrary pair of points T1 = (x1, y1, z1) and T2 = (x2, y2, z2) on S as
the inferior arc of the great circle determined by T1 and T2. Then the spherical distance
between T1 and T2 is defined by the length of geodesic arc of this pair of points, and we
denote ds(T1, T2) = cos–1(x1·x2 + y1·y2 + z1·z2) as the spherical distance between T1 and T2.

In order to solve our problem, we present the overlapping area of congruent spherical
caps under the Minkowski condition. Assume Ci and Cj be two congruent spherical caps,
of angular radius r, which are mutually overlapping under the Minkowski condition, and
let Aij = A(Ci � Cj) be the overlapping area where A(X) is the area of X. When r ≤
ds(Mi, Mj) ≤ 2r, the overlapping area of Ci and Cj is given by

A
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where hij = 2cos–1(cos r/cos (ds(Mi, Mj)/2)) is the spherical distance between cross points
of Ci and Cj. It is obvious that Aij is a monotone increasing function of hij when r is fixed
(SUGIMOTO and TANEMURA, 2003, 2006).

Let N be the number of spherical caps when the whole spherical surface S is completely
covered. And, let ∂Ci be the perimeter of Ci (i = 1, ..., N). Then we define:
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In other words, Wi is the union of Wi–1 and Ci satisfying the condition that the area
A(Wi–1 � Ci) is maximum with the restriction Mi ∈ ∂Ci–1. Hereafter, we call the case of (2)
that “  �ν =1

i Cν is in an extreme state.” We are always necessary to examine whether   �ν =1
i Cν

is in an extreme state in our sequential covering procedure. Then, we calculate the area
A(Wi–1 � Ci) by using (1) and the area formula of spherical triangle. Note that, in order to
simplify calculation, we often use the fact that A(Wi–1 � Ci) is maximum with the restriction
Mi ∈ ∂Ci–1 is the same as that A((Wi–1 � Ci)

c) is maximum with the restriction Mi ∈
∂Ci–1.

2.2.  Upper bounds rN and rN −1
We define rN as the upper bound of angular radius r for the case in which N congruent

open spherical caps completely cover the whole spherical surface S under the condition,
sequentially for i = 2, ..., N – 1, that Mi is set on ∂Ci–1, and that each area of the set
Wi–1 � Ci becomes maximum. Next, we define another upper bound of r, rN −1, such that
the set   �ν =

−
1
1N Cν which contains WN–2 cannot cover S under the Minkowski condition. Then

rN −1 should be equal to the spherical distance of the largest interval in the uncovered region
(WN–2)c of S. It is because, when the angular radius r is equal to rN −1, the set   �ν =

−
1
1N Cν which

contains WN–2 can cover S except for a finite number of points or a line segment under our
sequential covering. Therefore,   �ν =

−
1
1N Cν is in an extreme state if and only if at least one

endpoint of the interval, which has the above mentioned spherical distance rN −1, comes on
the perimeter ∂CN–2. Further, when there are two or more uncovered points, the spherical
distance of any pair of these uncovered points is less or equal to rN −1 since the largest
interval is assumed to be rN −1. Then, we can put the center MN of CN at one of the uncoverd
points. At this moment, we see that   �ν =1

N Cν which contains WN–1 covers S without any gap.
Then, we notice the fact that rN is equal to rN −1 . In this paper, we calculate each solution
for N = 10, 11, and 12 using above fact.

Refer to I for detailed explanations of rN and rN −1.

3.  Results

3.1.  N = 10
According to the considerations and results for N = 7, 8, and 9 of I, the angular radius

for N = 10 should be shorter than r9 = cos–1(1/3) ≈ 1.23096 rad and should be larger than
tan–12 ≈ 1.10715 rad. Therefore, let us consider the case for N = 10 under the assumption
tan–12 ≤ r ≤ r9. Even if our answer for N = 10 is obtained by this assumption tan–12 ≤ r, we
will also consider the range of r < tan–12 later.

If two spherical caps Ca (the coordinates of the center: (a1, a2, a3)) and Cb (the
coordinates of the center: (b1, b2, b3)) that satisfy Mb ∈ ∂Ca intersect, we will have the
coordinates (x, y, z) of cross points of the perimeters ∂Ca and ∂Cb by solving the following
simultaneous equations:
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Note that there are two cross points of ∂Ca and ∂Cb. When (a1, a2, a3) = (0, 0, –1) and
(b1, b2, b3) = (sin r, 0, –cos r), we get

− =
⋅ − ⋅ =

+ + =









( )
z r

r x r z r

x y z

cos ,

sin cos cos ,

.2 2 2 1

4

When K1 = (x1, y1, z1) and K2 = (x2, y2, z2) are the solutions of simultaneous Eq. (4), the
coordinates of cross points of ∂Ca and ∂Cb are as follows:

x y z
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First, as in the cases of N = 7, 8, and 9 in I, the centers M1, M2, and M3 are placed at
(0, 0, –1), K1, and (sin r, 0, –cos r), respectively. At this time, from Theorem 1 in I, the set
�ν =1

3 Cν is in an extreme state when the centers M1, M2, and M3 satisfy the relations
ds(M1, M2) = ds(M1, M3) = ds(M2, M3) = r. Then, let K3 be the one of the cross points of the
perimeters ∂C1 and ∂C2, and let it be outside C3. In addition, let K4 be one of the cross points
of ∂C2 and ∂C3, and let it not be the south pole (0, 0, –1). The explicit expressions of cross
points K3 and K4 are given in Appendix.

Then, from the cases of N = 7, 8, and 9 in I, we assume that the allocation of points K2

for M4 satisfies the condition that   �ν =1
4 Cν is in an extreme state. It is because, in the range

tan–12 ≤ r < π/2, our computations show that the area A(W3 � C4) is maximum when M4 is
put at K2 as we will see below. Let us place the center M4 at K4 and move it to K2 along the
arc K4K2 of C3. We calculate the area A(W3 � C4) against the moving point M4 numerically
for several fixed values of r among tan–12 ≤ r < π/2. The results are shown in Fig. 1. In this
figure, the horizontal axis is the position of M4 on the arc K4K2 of C3 and the vertical axis
is the area A(W3 � C4). In our computation, the arc K4K2 is divided into 100 equal intervals
and the area A(W3 � C4) is calculated on 101 end points of the intervals. Hereafter, the
similar computations are performed for determination of centers of spherical caps (see
Figs. 2, 4, and 7). As to the two values of r in Fig. 1, we find that this curve of A(W3 � C4)
is symmetrical at the center of the arc K4K2 (it is evident from the spherical symmetry) and
A(W3 � C4) is maximum at both ends. The same fact as above would hold for every values
of r in the range tan–12 ≤ r < π/2. Therefore, we expect that   �ν =1

4 Cν is in an extreme state
if and only if M4 is put at K2 or K4 for tan–12 ≤ r < π/2. To make sure, we shall check that
these points K2 and K4 satisfy the condition that   �ν =1

4 Cν is in an extreme state after
obtaining the exact values of the angular radius r at the last paragraph in this subsection.
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Therefore, we choose M4 on the point K2. Then, let K5 = (x5, y5, z5) be one of the cross points
of perimeters ∂C4 and ∂C1, and let it be outside C3. Further, let K6 = (x6, y6, z6) be one of
the cross points of ∂C4 and ∂C3, and let it not be the south pole (0, 0, –1). The explicit
expressions of cross points K5 and K6 are given in Appendix.

Next we calculate the area A(W4 � C5) when M5 is put at a certain point on the arc K6K5
of C4 and is moved on the arc. Since the fact that A(Wi–1 � Ci) is maximum with the
restriction Mi ∈ ∂Ci–1 is the same as that A((Wi–1 � Ci)

c) is maximum with the restriction
Mi ∈ ∂Ci–1, in order to simplify calculation, we calculate A((W4 � C5)c) against the moving
point M5 numerically for several fixed values of r among tan–12 ≤ r < π/2. Here, the
computation is performed as in the determination of M4. Figure 2(a) shows the results. In
this figure, the horizontal axis is the position of M5 on the arc K6K5 of C4 and the vertical
axis is the area A((W4 � C5)c). As a result, for the two values of r in Fig. 2(a), the curve of
A((W4 � C5)c) is symmetrical at the center of the arc K6K5 (it is evident from the spherical
symmetry) and A((W4 � C5)c) is maximum when M5 is placed on K6 or K5. The same fact
as above would hold for every values of r in the range tan–12 ≤ r < π/2. Therefore, we expect
that   �ν =1

5 Cν is in an extreme state if and only if M5 is put at K5 or K6 for tan–12 ≤ r < π/2.
To make sure, we shall check whether the point K5 and K6 such points after obtaining the
exact values of the angular radius r at the last paragraph in this subsection like the case of
M4. We choose M5 on the point K5 as in the cases of N = 7, 8, and 9 in I. Then, let K7 =
(x7, y7, z7) be one of the cross points of the perimeters ∂C5 and ∂C4, and let it be outside of
C1. Similarly, let K8 = (x8, y8, z8) be one of the cross points of ∂C5 and ∂C2, and let it be
outside of C1. The exact coordinates of K7 and K8 are also given in Appendix.

When each M1, M2, M3, M4, and M5 is placed at (0, 0, –1), K1, (sin r, 0, –cos r), K2, and
K5, respectively, the shape of the uncovered region (W5)c is formed as a kite K8K4K6K7 on
the unit sphere (see Fig. 3). We note the sides of the kite K8K4K6K7 are not geodesic arcs

Fig. 1.  The curve of A(W3 � C4) when M4 is moved on the arc K4K2 of C3. Here, as in the cases of N = 7, 8, and
9 in I, the arc K4K2 is divided into 100 equal intervals and the area A(W3 � C4) is calculated on 101 end points
of the intervals. Note that the curve of r � 1.10715 corresponds to the case of r = tan–12. The values of r of
other curves are described in the text.
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but are perimeters of spherical caps. From the configuration of the vertices K8, K4, K6, and
K7 of the kite K8K4K6K7, for the range tan–12 ≤ r < π/2, the relations of spherical distance
between each vertices always hold as follows:
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 , , , .
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Fig. 2.  (a) The curve of A((W4 � C5)c) when M5 is moved on the arc K6K5 of C4. (b) The curve of A((W5 � C6)c)
when M6 is moved on the arc K7K8 of C5. The similar computation method as in Fig. 1 is taken. See the legend
in Fig. 1.
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In addition, for tan–12 ≤ r < cos–1((2 2  – 1)/7), there hold the following relations of
spherical distance between each vertices of the kite K8K4K6K7.

ds(K6, K4) ≤ r < ds(K4, K7) < ds(K8, K4) . (8)

Note that we find numerically that these relations (7) and (8) hold by using mathematical
software. In passing, cos–1((2 2  – 1)/7) ≈ 1.30653 rad is equal to the upper bound r8 for
N = 8 (SUGIMOTO and TANEMURA, 2003, 2004, 2006).

Now, we want to place five centers of C6, C7, C8, C9, and C10 in the uncovered kite
K8K4K6K7 under the Minkowski condition. In this kite, we need to consider five points
which keep spherical distance r with each other.

Here, we search the position of M6 which satisfies the condition that A((W5 � C6)c) is
maximum with the restriction M6 ∈ ∂C5 (i.e.   �ν =1

6 Cν is in an extreme state). From the
restriction M6 ∈ ∂C5, M6 is put at a certain point on the arc K7K8 of C5 and, during M6 is
moved on the arc K7K8 of C5, we calculate A((W5 � C6)c) against the moving point M6

numerically for several fixed values of r among tan–12 ≤ r < r7 = cos–1(1 – (4/ 3 ) ×
cos(7π/18)) ≈ 1.35908 rad. Figure 2(b) shows the graph of computational results. In this
figure, the horizontal axis is the position of M6 on the arc K7K8 of C5 and the vertical axis
is the area A((W5 � C6)c). As a result, we find that A((W5 � C6)c) is maximum when M6 is
put on K8. Therefore, we expect that   �ν =1

6 Cν is in an extreme state if and only if M6 is put
at K8 in the range tan–12 ≤ r < r7. We shall check that K8 is such point after obtaining the
exact values of the angular radius r as in the cases of M4 and M5. We choose here M6 on the
point K8. Let K9 = (x9, y9, z9) be one of the cross points of the perimeters ∂C6 and ∂C2, and
let it be outside of C1. Similarly, let K10 = (x10, y10, z10) be one of the cross points of ∂C6
and ∂C5, and let it be outside of C1. The exact coordinates of K9 and K10 are also given in
Appendix. Here, let us assume two points K11 ∈ ∂C3, and K12 ∈ ∂C4. In addition, we suppose
K9, K10, K11, and K12 satisfy the relations

Fig. 3.  The kite K8K4K6K7 on unit sphere.
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Then, we see that K8K9K10 is a spherical equilateral triangle and that K9K11K12K10 is a
spherical square (see Fig. 3). If such an arrangement of vertices K9, K10, K11, and K12 is
actually possible, the upper bound r10 ( r9 ) is considered to be equal to a side-length (e.g.,
the spherical distance between the points K9 and K11) of the spherical square K9K11K12K10.
Then, if M7, M8, and M9 are placed on the points K9, K10, and K12, respectively, the surface
S is covered by the set   �ν =1

9 Cν except for the point K11. That is, our sequential covering is
realized. At this time, K11 and K12 are just cross points of ∂C7 and ∂C3, and ∂C8 and ∂C4,
respectively. Note that the points K9 and K10 are the positions such that   �ν =1

7 Cν and   �ν =1
8 Cν

are in an extreme state, respectively. However, it is not checked yet that K9 and K10 are such
positions. We shall check these facts after obtaining the exact values of the angular radius
r and the coordinates of K11 and K12.

From the above consideration that our r is equal to a side-length of spherical square
K9K11K12K10, the equation r = ds(K9, K11), for instance, should be satisfied. Then, we get
the exact value of r which satisfies this equation. Therefore, to begin with, we calculate the
coordinates of the points K9 and K11 which satisfy (9). Since the point K9 is a cross point
of the perimeters ∂C6 and ∂C2, the coordinates of K9 are calculable by using (3), (5), and
the coordinates of K8 in Appendix like the case of N = 9 in I. The result is given in Appendix.
Next, we need to calculate the coordinates of K11 without using the coordinates of K9.
Otherwise, we cannot get an equation of r in a closed form. So we pay attention to the
spherical distance � = ds(K8, K11). Then, by applying the spherical cosine theorem to the
spherical isosceles triangle K8K9K11 of legs ds(K8, K9) = ds(K9, K11) = r, cos� may be written
as follows:

  
cos

cos cos cos cos cos cos
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.l =
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It is because the inner angle at K9 of the spherical isosceles triangle K8K9K11 is the sum of
the interior angles of spherical equilateral triangle K8K9K10 and spherical square K9K11K12K10.
In this connection, the inner angle of spherical equilateral triangle of side-length r is
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As a result, we can obtain the coordinates of K11 = (x11, y11, z11) by using simultaneous
equations ds(K11, M3) = r, ds(K8, K11) = �, and x11

2 + y11
2 + z11

2 = 1. Here, M3 = (sin r, 0,
–cos r) and refer to Appendix for the coordinates of K8. The explicit coordinates of cross
point K11 are shown in Appendix.

From ds(Ki, Kj) = cos–1(xi·xj + yi·yj + zi·zj) and the coordinates of K9 and K11 in
Appendix, we get the equation of the following type

r = ds(K9(r), K11(r)) .

Then, the equation is solved against r by using mathematical software. The form of the
solution and its value is obtained as

  

r r10 9
1 1

1

24

3

1

3

3 229

9
3= =













+



























≈

( )
− −tan cos tan

    1.1544798334192707378319618404230 rad .

10

L

By using (10), we find numerically at an arbitrary precision that the relation (9) is
attained as we expected. Note that we get also another solution r ≈ 1.192753··· rad (the exact
equation for this value is omitted since it is complicated) in the range of tan–12 ≤ r ≤
cos–1(1/3) ≈ 1.23096 rad when r = ds(K9, K11) is solved against r. But, for r ≈ 1.192753···
rad, we find ds(K11, K12) < r numerically. Namely, K11 and K12 do not satisfy the relation
(9). Therefore, when M9 is put at K12, C9 will cover K11. Thus, we can exclude this answer
r ≈ 1.192753··· rad as the solution of inadequacy.

As we have noted, we check here whether the allocations of the points K2, K5, K8, K9,
and K10 for M4, M5, M6, M7, and M8, respectively, satisfy the condition that   �ν =1

4 Cν,

  �ν =1
5 Cν,   �ν =1

6 Cν,   �ν =1
7 Cν, and   �ν =1

8 Cν are in an extreme state, each, by using the value of
(10). First, from the considerations for determinations of Mi mentioned above, we checked
numerically that the area A(Wi–1 � Ci) (or A((Wi–1 � Ci)

c)) are maximum with the
restriction Mi ∈ ∂Ci–1 (  �ν =1

i Cν are in an extreme state) when M4, M5, and M6 are put at K2,
K5, and K8, respectively. Then, these results are graphically presented by the curve of r �
1.15448 corresponding to the value of (10) in Figs. 1 and 2. Therefore, for N = 10, our
choice of M4, M5, and M6 are justified. Next, we examine the position of M7 where
A((W6 � C7)c) is maximum. Then, we calculate A((W6 � C7)c) against the moving point M7
on the arc K10K9 of C6 numerically for several fixed values of r among tan–12 ≤ r < r8 =
cos–1((2 2  – 1)/7) ≈ 1.30653 rad. As a result, the curve of A((W6 � C7)c) is symmetrical
at the center of the arc K10K9 (it is evident from the shape of uncovered region (W6)c) and
A((W6 � C7)c) is maximum at both end for the two values of r in Fig. 4(a). The same fact
as above would hold for every values of r in the range tan–12 ≤ r < r8. Figure 4(a) illustrates
the result of computation for M7. In this figure, the horizontal axis is the position of M7 on
the arc K10K9 of C6 and the vertical axis is A((W6 � C7)c). Then, the result is graphically
presented by the curve of r � 1.15448 corresponding to the value of (10) in Fig. 4(a).
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Therefore, for the value of (10), we check numerically that   �ν =1
7 Cν are in an extreme state

if and only if M7 is put at K9 or K10. In this paper, we choose M7 on the point K9. Then, in
order to find the optimal position of M8, let us place M8 at K10 and move it to K11 along the
arc K10K11 of C7. Therefore, we calculate A((W7 � C8)c) against the moving point M8 on the
arc K10K11. When r is equal to (10), we find numerically that A((W7� C8)c) is maximum
with the restriction M8 ∈ ∂C7 (  �ν =1

8 Cν is in an extreme state) if and only if M8 is put at K10.
The curve of r � 1.15448 in Fig. 4(b) presents this result. In Fig. 4(b), the horizontal axis
is the position of M8 on the arc K10K11 of C7 and the vertical axis is A((W7 � C8)c). Hence,
for N = 10, our choices for M7 and M8 are justified.

As mentioned above, when eight spherical caps whose angular radius is the value of
(10) are placed on S according to our sequential covering, the uncovered region (W8)c is a

Fig. 4.  (a) The curve of A((W6 � C7)c) when M7 is moved on the arc K10K9 of C6. (b) The curve of A((W7 � C8)c)
when M8 is moved on the arc K10K11 of C7. The similar computation method as in Fig. 1 is taken. See the
legend in Fig. 1.
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quadrangle on S. Then, from Corollary of Theorem 2 in I and the relations for four vertices
of (W8)c, we find that ds(K11, K12) is equal to the spherical distance of the largest interval
in the uncovered region (W8)c. Therefore, r9  is equal to (10). In addition, we find that

  �ν =1
9 Cν is in an extreme state if and only if M9 is put on the point K12 ∈ ∂C8. Therefore, we

choose M9 on K12, and then K11 is the unique uncovered point on S.
For N = 10, we initially assumed that r should be in the range (tan–12, cos–1(1/3)]. Then,

as a result of the investigation, our upper bound r10, (10), has fallen within the range
(tan–12, r9]. However, one might suspect that the fact is due to the assumption. So, if r is
in the range (0, tan–12], we examine whether W9 is able to cover S except for finite points.
When r is assumed to be equal to tan–12, we find that the set W9 leave an uncovered region
on S. For its detail, refer to the consideration of Subsec. 3.2. Furthermore, for 0 < r <
tan–12, the uncovered region would become still bigger. Hence, the upper bounds r10 cannot
be in the range (0, tan–12] as in the cases of N = 8 and 9 in I. Thus, we note that our initial
assumption tan–12 < r ≤ r9 is also confirmed (r = tan–12 is excluded from the above
consideration).

As a result of consideration above, the set W9 covers S except for K11. Therefore, when
M10 is put at the point K11, the whole of S is covered by   �ν =1

10 Cν which contains W9 (see Fig.
5(a)). Thus, our consideration that our r is equal to the upper bound r10 (a side-length of the
spherical square K9K11K12K10 which satisfies (9)) is confirmed and (10) is certainly the
upper bound for N = 10.

3.2.  N = 11 and 12
It is expected that the solution r11 for N = 11 should not be larger than r10. Then, we

assume r11 ≤ r ≤ r10. Further, we assume tan–12 ≤ r11. Hence, the relations (7) and (8) hold
because of the assumption tan–12 ≤ r11 ≤ r ≤ r10. Then, we can use the same configuration
of the first five spherical caps of the case N = 10. When the fifth spherical cap C5 is put on
the sphere, in the same way as the foregoing subsection, a quadrilateral kite K8K4K6K7 on
the sphere might be formed as the uncovered region. Further, because of the condition that

Fig. 5.  (a) Our sequential covering for N = 10. (b) Our solution of Tammes problem for N = 10. Both viewpoints
are (0, 0, 10). In this example, the coordinates of the centers are respectively (0, 0, –1), (0.26335, –0.87585,
–0.40439), (0.91458,0, –0.40439), (0.26335, 0.87585, –0.40439), (–0.76292, 0.50440, –0.40439),
(–0.77575, –0.57681, –0.25593), (–0.13883, –0.78326, 0.60599), (–0.79006, 0.092588, 0.60599), (0.084546,
0.74290, 0.66405), and (0.735778, –0.13295, 0.66405).
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  �ν =1
6 Cν is in an extreme state, the center M6 should be placed again on the point K8. Then,

let K9 be one of the cross points of the perimeters ∂C6 and ∂C2, and let it be outside C1.
Similarly, let K10 be one of the cross points of ∂C6 and ∂C5, and let it be outside C1. At this
time, the uncovered region (W6)c is reduced to the pentagon K9K4K6K7K10 which is bounded
by perimeters of spherical caps.

Before considering the case of N = 11, we look back upon the cases of N = 9 and 10.
For N = 9, we considered two spherical equilateral triangles K8K9K10 and K9K6K10 in the
kite K8K4K6K7 on the sphere. At that time, we placed the centers of four caps on each
vertices of two spherical equilateral triangles and obtained the upper bound r9 by using the
relation that the angular radius r is equal to a side-length of the spherical equilateral triangle
(SUGIMOTO and TANEMURA, 2003, 2006). For N = 10, in Subsec. 3.1, we considered the
spherical equilateral triangle K8K9K10 and the spherical square K9K11K12K10 (see Fig. 3).
Then, the centers of five caps are put on each vertices and the upper bound r10 is obtained
by using the relation that r is equal to a side-length of the spherical square K9K11K12K10.

Now, for N = 11, we assume the spherical equilateral triangle K8K9K10 and the
spherical regular pentagon of side-length r on the kite K8K4K6K7, in order to place six more
caps under the Minkowski condition. Therefore, here, let us assume K9, K10, K11 ∈ ∂C2 or
∂C3, and K12 ∈ ∂C4 or ∂C5 satisfy

d K K d K K d K K d K K

d K K d K K d K K
s s s s

s s s

8 9 8 10 9 10 9 11

11 6 6 12 12 10

11
, , , ,

 , , , .

( ) = ( ) = ( ) = ( )
= ( ) = ( ) = ( ) ( )

If the arrangement of vertices K9, K10, K11, and K12 are actually possible, we obtain the
upper bound r11 ( r10 ) by using the relation that the angular radius r is equal to a side-length
of the spherical regular pentagon K9K11K6K12K10 as the cases of N = 9 and 10 (see Fig. 6).
Then, for example, when Mi (i = 6, ..., 10) are placed on the points K8, K9, K10, K12, and K6,
respectively, we guess that   �ν =1

i Cν is in an extreme state and that K11 is an uncovered point
on S. Therefore, finally, M11 can be placed at K11. However, it is not checked yet that K9,
K10, K12, and K6 satisfy such a condition that   �ν =1

i Cν is in an extreme state for i = 7, ..., 10,
respectively. We shall check this fact after obtaining the exact values of the angular radius

Fig. 6.  The kite K8K4K6K7, the spherical equilateral triangle K8K9K10, and the spherical regular pentagon
K9K11K6K12K10.
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r and the coordinates of K11 and K12.
Now, by applying the spherical cosine and sine theorems, the inner angle of spherical

regular pentagon of side-length r is given as follows:

cos
cos

cos
.− − −

+( )






1 2 1 5

2 1

r

r

Here, we pay attention to the spherical isosceles triangle K9K11K6 whose legs satisfy
ds(K11, K9) = ds(K11, K6) = r. Then, by applying the spherical cosine theorem to this
isosceles triangle K9K11K6, we have

d K K r
r r

s 6 9
1 2

1 2 1 5

2
12, cos cos

cos cos
.( ) = +

−( ) − −( )







 ( )−

Note that the left hand side of (12) is presented as the function of r by using the coordinates
of K6 and K9. Refer to Appendix for the explicit coordinates of K6 and K9. Equation (12)
is solved against r by using mathematical software. As a result, the value of r is obtained
as

r = tan–12. (13)

Therefore, the side-length of spherical regular pentagon K9K11K6K12K10 which satisfies the
relation (11) is tan–12.

Here, from the relation (8), let us consider the special case r = ds(K6, K4). When
r = ds(K6, K4) is solved against r by using mathematical software, we get again the solution
r = tan–12. Therefore, r = ds(K6, K4) = ds(K6, K7) = tan–12 from the relation (7). On the other
hand, from the fact that the side-length of spherical regular pentagon K9K11K6K12K10 which
satisfies (11) is tan–12, ds(K6, K11) = ds(K6, K12) = tan–12. Thus, we find the result as follows:

K11 ≡ K4  and  K12 ≡ K7

if and only if r = tan–12. It follows that the spherical regular pentagon K9K11K6K12K10 which
satisfies (11) is identical with the spherical regular pentagon K9K4K6K7K10 of side-length
tan–12. We note that the vertex K8 of kite K8K4K6K7 is on the perimeter of the first spherical
cap C1 then. In addition, we have shown that tan–12 is equal to the upper bound of the range
of angular diameter for the kissing number k = 5 (SUGIMOTO and TANEMURA, 2003, 2006).
Therefore, as a result, we find that the spherical regular pentagon K9K4K6K7K10 satisfies the
relation as follows:

ds(K8, K9) = ds(K8, K10) = ds(K9, K10) = ds(K9, K4)
 = ds(K4, K6) = ds(K6, K7) = ds(K7, K10) = ds(P, K9) (14)
 = ds(P, K4) = ds(P, K6) = ds(P, K7) = ds(P, K10) = tan–12,
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where P is the center point of spherical regular pentagon K9K4K6K7K10. From the above
considerations, for tan–12 ≤ r ≤ r10, we see that the maximal spherical regular pentagon of
side-length r on the uncovered region (W6)c is coincident with the spherical regular
pentagon K9K4K6K7K10 which satisfies the relation (14).

Then, for N = 11, let us examine whether our sequential covering is actually possible
when the angular radius r of caps is equal to tan–12 ≈ 1.10715. First, we find numerically
that the allocations of points K2, K5, K8, and K9 for M4, M5, M6, and M7, respectively, satisfy
the condition that each A(Wi–1 � Ci) (or A((Wi–1 � Ci)

c)) is maximum with restriction
Mi ∈ ∂Ci–1 (  �ν =1

i Cν are in an extreme state) for i = 4, 5, 6 and 7. As mentioned above, the
results are indicated by the curve of r � 1.10715 rad corresponding to r = tan–12 in Figs.
1, 2, and 4(a). Then, we see that K10 is the cross point of ∂C6, ∂C5, and ∂C7. Furthermore,
K4 is the cross point of ∂C2, ∂C3, and ∂C7. Therefore, from the restriction M8 ∈ ∂C7, M8 is
put at a certain point on the arc K10K4 of C7. Then, we move M8 on the arc K10K4 of C7 and
search for the position of M8 where the area A((W7 � C8)c) is maximum. For r = tan–12, we
checked numerically that   �ν =1

8 Cν are in an extreme state if and only if M8 is put at K10 or
K4. The fact is graphically presented by the curve of r � 1.10715 in Fig. 4(b). Note that the
arc K10K11 in Fig. 4(b) turns out the arc K10K4 since K11 ≡ K4 for r = tan–12. Thus, in this
paper, M8 is put at K10. Then, the uncovered region (W8)c is the quadrangle K4K6K7P on S.
Next, for r = tan–12, let us place M9 at K7 and move it to P along the arc K7P of C8, and then
we search for the position of M9 where the area A((W8 � C9)c) is maximum. As a result, we
find that   �ν =1

9 Cν is in an extreme state when M9 is put at K7. The curve of r � 1.01715 in
Fig. 7 indicates this fact. In this figure, the horizontal axis is the position of M9 on the arc
K7P of C8 and the vertical axis is the area A((W8 � C9)c). Therefore, we put M9 at K7. Then,
K6 and P are the cross points on ∂C9 and the uncovered triangle K4K6P on S is the equilateral
triangle of side-length tan–12. Hence, when M10 is put on the point K6 ∈ ∂C9, we see that

Fig. 7.  The curve of A((W8 � C9)c) when M9 is moved on the arc K7P of C8. The similar computation method
as in Fig. 3 is taken. See the legend in Fig. 3.
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  �ν =1
10 Cν is in an extreme state automatically and that S is covered by the set W10 except for

two points K4 (or K11) and P (the center point of spherical regular pentagon K9K4K6K7K10)
from the relation (14). At this time, we see that P is the cross point of perimeters ∂C7, ∂C8,
and ∂C9. Furthermore, as a result of calculation by using the coordinates of K9, K10, and K7
for r = tan–12, P is just the north pole (0, 0, 1) certainly. Therefore, if M11 is put on K4 ∈
∂C10,   �ν =1

11 Cν is in an extreme state and P is a unique uncovered point on S. Then, in order
to cover whole of S, we have to put one more cap at P. In other words, when r = tan–12,
according to our sequential covering, we can put twelve caps on S under Minkowski
covering. Therefore, M11 and M12 are put on K4 and P, respectively, then   �ν =1

12 Cν which
contains W11 covers the whole of S. Namely, we are able to see that ds(P, K4) = tan–12 = r11 .
Thus, we consider that tan–12 is the upper bound r12 for N = 12. As a result, we find that the
positions of caps of our sequential covering for N = 12 correspond to the regular icosahedral
vertices (see Fig. 8(a)). Therefore, if all spherical caps of our sequential covering for N =
12 are replaced by half-caps, all of those half-caps contact with other five half-caps and
there is no space for those half-caps to move.

Then, how about r11? From the results of N = 10 and 12, it becomes obvious that our
initial assumption r12 = tan–12 ≤ r ≤ r10 is indispensable. At the time the center M6 is placed
on the point K8, we had to place five more caps of the angular radius r on the uncovered
region (W6)c under the Minkowski covering. Then, from the above considerations, we see
that the maximal spherical regular pentagon of side-length r (r12 ≤ r ≤ r10) on (W6)c is
identical with the spherical regular pentagon K9K4K6K7K10 which satisfies the relation
(14). So, we conclude that r11 is equal to r12 = tan–12 and use the same configuration of the
first eleven spherical caps of the case N = 12. However, when r11 = tan–12, our sequential
covering for N = 11 covers S except for the point P. But, if only the eleventh cap C11 is
replaced by a closed cap, our eleven caps can completely cover the whole of S under the
Minkowski condition. Thus, for N = 11, we need a special care as above.

Fig. 8.  (a) Our sequential covering for N = 12. (b) Our solution of Tammes problem for N = 12. Both viewpoints
are (0, 0, 10). In this example, the coordinates of the centers are respectively (0, 0, –1), (0.27639, –0.85065,
–0.44721), (0.89443,0, –0.44721), (0.27639, 0.85065, –0.44721), (–0.72361, 0.52573, –0.44721),
(–0.72361, –0.52573, –0.44721), (–0.27639, –0.85065, 0.44721), (–0.89443,0, 0.44721), (–0.27639, 0.85065,
0.44721), (0.72361, 0.52573, 0.44721), (0.72361, –0.52573, 0.44721), and (0, 0, 1).
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4.  Conclusion

From the results of Sec. 3, if all of those spherical caps are replaced by half-caps, the
results of our problem for N = 10, 11, and 12 are coincident with those of the Tammes
problem (see Figs. 5, 8, and 9).

Especially, we obtained in this paper the exact closed form of r10 for N = 10 (see (10)),
whereas Danzer have obtained the range [1.154479, 1.154480] of angular diameter for
N = 10 (DANZER, 1963). Further, Danzer have solved the Tammes problem for N = 10 and
11 through the consideration on irreducible graphs obtained by connecting those points,
among N points, whose spherical distance is exactly the minimal distance. Then he needed
the independent considerations for N = 10 and 11, respectively. However, we presented a
systematic method which is different from the approach of Danzer about the Tammes
problem. Namely, as shown in Sec. 3, our method is able to obtain a solution for N by using
the results for the case N – 1 or N – 2. In addition, in this study, we have considered the
Tammes (packing) problem from the standpoint of sequential covering. The advantages of
our approach are that we only need to observe uncovered region in the process of packing
and that this uncovered region decreases step by step as the packing proceeds.

A set of spherical caps is said to be a Minkowski set if none of its elements contains
in its interior the center of another. In our study, the condition of Minkowski set of centers
is called a Minkowski condition, and the covering which satisfies the Minkowski condition
is called a Minkowski covering. On the other hand, replacing each spherical cap in a
Minkowski set of spherical caps with a concentric caps of radius half as big as the original,
FEJES TÓTH (1999) called a Minkowski packing (i.e., the Minkowski packing is our
packing of half-caps) and demonstrated the upper bounds for densities of a Minkowski
packing and a Minkowski set. Note that their densities are sharp for N = 3, 4, 6, and 12, and
are asymptotically sharp for great values of N. Then, we checked that our solutions for
N = 3, 4, 6, and 12 are coincident with his results. In I, we defined the efficiency of covering
on spherical surface. Our efficiency is the reciprocal of the density of a Minkowski set.

Fig. 9.  (a) Our solution of Tammes problem for N = 10. (b) Our solution of Tammes problem for N = 12. Note
that the spheres are drawn with the wireframe.
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Therefore, our solutions for N = 3, 4, 6, and 12 are the worst efficient covering under the
Minkowski condition.

It is interesting to point out that our method presented in this paper will be also useful
for providing a conjectured value of optimal angular radius for any N by using the already
known value for N – 1. This will be done as follows: (i) first we set the angular radius of
a spherical cap by using the known exact or approximate value for N – 1, namely, we put
r = r̂N −1  where r̂N −1  is the exact or approximate value of r for N – 1; (ii) then we put N
spherical caps with radius r through our method of sequential covering; (iii) in this stage,
it is possible that the Minkowski condition will be broken especially when the N-th
spherical cap is placed. If this is true, decrease the size of r so far as the Minkowski
condition is satisfied and go to Step (ii). Otherwise, check if the whole of S except for a
point or a line segment is covered by N – 1 spherical caps. If it holds, the procedure ends,
else increase r by a prescribed value ∆r then go to Step (ii). We will be able to estimate the
value of an optimal angular radius for any N by this procedure.

Throughout our paper, we used the mathematical software, Maple 8 and 9.5, which is
capable of manipulating complicate algebraic expressions exactly and is also useful for
numerical computations.
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Univ. of Ryukyu, for their helpful comments.
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Appendix: The Coordinates of Ki (i = 3, 4, 5, 6, 7, 8, 9, and 11)

In the following, r (tan–12 ≤ r < π/2) is the angular radius.
The coordinates of Ki (i = 3, 4, 5, 6, 7, and 8) are shown for reader’s convenience,

although indicated in I.
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sin cos cos

cos
,

cos sin cos

cos
, cos .

r r r

r

r r r

r
r

2

2 2

2 1

1

2 2 1

1

− −( )
+( )

− +
+( )

−










K4 = (x4, y4, z4):

2 2 1

1

2 2 1

1

4 1

12 2

2cos sin cos

cos
,

cos sin cos

cos
,

cos cos

cos
.

r r r

r

r r r

r

r r

r

+( )
+( )

− +
+( )

− − −
+








K5 = (x5, y5, z5):

sin cos cos

cos
,

cos sin cos

cos
, cos .

r r r

r

r r r

r
r

2

2 2

2 1

1

2 2 1

1

− −( )
+( )

+
+( )

−












174 T. SUGIMOTO and M. TANEMURA

K6 = (x6, y6, z6):
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K8 = (x8, y8, z8):
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K9 = (x9, y9, z9):
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K11 = (x11, y11, z11) are shown in cos � (see Subsec. 3.1) and the coordinates of K8 due
to their lengthy expressions.
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y

z

y

x z r

y
x11
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8
11= + − +cos tan

,
l

z11 = – 1 + tan r·x11 .
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