Packing and Minkowski Covering of Congruent Spherical Caps on a Sphere, II: Cases of $N=10,11$, and 12

Teruhisa Sugimoto ${ }^{1 *}$ and Masaharu Tanemura ${ }^{1,2}$
${ }^{1}$ The Institute of Statistical Mathematics, 4-6-7 Minami-Azabu, Minato-ku, Tokyo 106-8569, Japan
${ }^{2}$ Department of Statistical Science, The Graduate University for Advanced Studies, 4-6-7 Minami-Azabu, Minato-ku, Tokyo 106-8569, Japan
*E-mail address: sugimoto@ism.ac.jp

(Received August 6, 2007; Accepted October 3, 2007)
Keyword: Spherical Cap, Sphere, Packing, Covering, Tammes Problem

Abstract

Let $C_{i}(i=1, \ldots, N)$ be the i-th open spherical cap of angular radius r and let M_{i} be its center under the condition that none of the spherical caps contains the center of another one in its interior. We consider the upper bound, r_{N}, (not the lower bound!) of r of the case in which the whole spherical surface of a unit sphere is completely covered with N congruent open spherical caps under the condition, sequentially for $i=2, \ldots$, $N-1$, that M_{i} is set on the perimeter of C_{i-1}, and that each area of the set $\left(\cup_{v=1}^{i-1} C_{v}\right) \cap C_{i}$ becomes maximum. In this paper, for $N=10,11$, and, 12 , we found out that the solutions of our sequential covering and the solutions of the Tammes problem were strictly correspondent. Especially, we succeeded to obtain the exact closed form of r_{10} for $N=10$.

1. Introduction

The circle on the surface of a sphere is called a spherical cap. Among the problems of packing on the spherical surface, the closest packing of congruent spherical caps is the most famous, and is usually known as the Tammes problem (TAMMES, 1930). So far, the mathematically proved solution of Tammes problem were given for $N=1, \ldots, 12$, and 24 (Schütte and Van der Waerden, 1951; Danzer, 1963; Fejes Tóth, 1972). The exact closed form of solution in the cases for $N=1, \ldots, 9,11,12$, and 24 are known, but in the case for $N=10$, the solution was only known in the rage [1.154479, 1.154480] by DANZER (1963).

In our study, the condition that none of spherical caps contains the center of another one in its interior is called "Minkowski condition" (Sugimoto and Tanemura, 2003, 2004, 2006). Let C_{i} be the i-th open spherical cap of angular radius r and let M_{i} be its center under the Minkowski condition $(\mathrm{i}=1, \ldots, N)$. Then, our problem is as follows; the whole spherical surface of a unit sphere is completely covered with N congruent open spherical caps under the condition, sequentially for $i=2, \ldots, N-1$, that M_{i} is set on the perimeter of C_{i-1}, and that each area of the set $\left(\cup_{v=1}^{i-1} C_{v}\right) \cap C_{i}$ becomes maximum. That is, our problem is to calculate the upper bound of r for our sequential covering. In our previous paper
(Sugimoto and Tanemura, 2006; hereafter, we refer it as I), we calculated the upper bounds for $N=2, \ldots, 9$. Here, we define a "half-cap" as the spherical cap whose angular radius is $r / 2$ and which is concentric with the original cap. If the centers of N half-caps are placed on the positions of the centers of $C_{i}(i=1, \ldots, N)$, we get the packing with N congruent half-caps. Then, for $N=2, \ldots, 9$, we found that the upper bound of our problem with N congruent spherical caps and the value of angular diameter of the Tammes problem are equivalent, and that the location of centers of our problem is correspondent to that of the Tammes problem (Sugimoto and Tanemura, 2003, 2004, 2006). Further, it should be said that our method is a systematic and a different approach to the Tammes problem from the works by SChÜTTE and VAN DER WAERDEN (1951), etc.

In this paper, we calculate the upper bounds of r for $N=10,11$, and 12 theoretically by using our sequential covering procedure. As a result, for $N=10,11$, and 12 , we found out that the solutions of our sequential covering and the solutions of the Tammes problem were strictly correspondent as the cases of $N=2, \ldots, 9$. Especially, the exact closed form for $N=10$ is obtained (see Eq. (10)). Further, we presented a systematic method which is different from the approach of DANZER (1963).

2. Preparations

2.1. Overlapping area and union W_{i}

Throughout this paper we assume that the center of the unit sphere is the origin $O=$ $(0,0,0)$ and represent the surface of this unit sphere by the symbol S. In the following, open spherical caps are simply written as spherical caps unless otherwise stated. We define the geodesic arc between an arbitrary pair of points $T_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $T_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ on S as the inferior arc of the great circle determined by T_{1} and T_{2}. Then the spherical distance between T_{1} and T_{2} is defined by the length of geodesic arc of this pair of points, and we denote $d_{s}\left(T_{1}, T_{2}\right)=\cos ^{-1}\left(x_{1} \cdot x_{2}+y_{1} \cdot y_{2}+z_{1} \cdot z_{2}\right)$ as the spherical distance between T_{1} and T_{2}.

In order to solve our problem, we present the overlapping area of congruent spherical caps under the Minkowski condition. Assume C_{i} and C_{j} be two congruent spherical caps, of angular radius r, which are mutually overlapping under the Minkowski condition, and let $A_{i j}=A\left(C_{i} \cap C_{j}\right)$ be the overlapping area where $A(X)$ is the area of X. When $r \leq$ $d_{s}\left(M_{i}, M_{j}\right) \leq 2 r$, the overlapping area of C_{i} and C_{j} is given by

$$
\begin{equation*}
A_{i j}=-2 \cos ^{-1}\left(\frac{\cos h_{i j}-\cos ^{2} r}{\sin ^{2} r}\right) \cos r-4 \cos ^{-1}\left(\frac{1-\cos h_{i j}}{\tan r \cdot \sin h_{i j}}\right)+2 \pi . \tag{1}
\end{equation*}
$$

where $h_{i j}=2 \cos ^{-1}\left(\cos r / \cos \left(d_{s}\left(M_{i}, M_{j}\right) / 2\right)\right)$ is the spherical distance between cross points of C_{i} and C_{j}. It is obvious that $A_{i j}$ is a monotone increasing function of $h_{i j}$ when r is fixed (Sugimoto and Tanemura, 2003, 2006).

Let N be the number of spherical caps when the whole spherical surface S is completely covered. And, let ∂C_{i} be the perimeter of $C_{i}(i=1, \ldots, N)$. Then we define:

$$
\begin{equation*}
W_{i}=\left\{W_{i-1} \cup C_{i} \mid \max _{M_{i} \in \partial C_{i-1}} A\left(W_{i-1} \cap C_{i}\right)\right\}, \quad i=2, \ldots, N-1 ; \quad W_{1}=C_{1} . \tag{2}
\end{equation*}
$$

In other words, W_{i} is the union of W_{i-1} and C_{i} satisfying the condition that the area $A\left(W_{i-1} \cap C_{i}\right)$ is maximum with the restriction $M_{i} \in \partial C_{i-1}$. Hereafter, we call the case of (2) that " $\cup_{v=1}^{i} C_{v}$ is in an extreme state." We are always necessary to examine whether $\cup_{v=1}^{i} C_{v}$ is in an extreme state in our sequential covering procedure. Then, we calculate the area $A\left(W_{i-1} \cap C_{i}\right)$ by using (1) and the area formula of spherical triangle. Note that, in order to simplify calculation, we often use the fact that $A\left(W_{i-1} \cap C_{i}\right)$ is maximum with the restriction $M_{i} \in \partial C_{i-1}$ is the same as that $A\left(\left(W_{i-1} \cup C_{i}\right)^{c}\right)$ is maximum with the restriction $M_{i} \in$ ∂C_{i-1}.

2.2. Upper bounds r_{N} and \bar{r}_{N-1}

We define r_{N} as the upper bound of angular radius r for the case in which N congruent open spherical caps completely cover the whole spherical surface S under the condition, sequentially for $i=2, \ldots, N-1$, that M_{i} is set on ∂C_{i-1}, and that each area of the set $W_{i-1} \cap C_{i}$ becomes maximum. Next, we define another upper bound of r, \bar{r}_{N-1}, such that the set $\cup_{v=1}^{N-1} C_{v}$ which contains W_{N-2} cannot cover S under the Minkowski condition. Then \bar{r}_{N-1} should be equal to the spherical distance of the largest interval in the uncovered region $\left(W_{N-2}\right)^{c}$ of S. It is because, when the angular radius r is equal to \bar{r}_{N-1}, the set $\cup_{v=1}^{N-1} C_{v}$ which contains W_{N-2} can cover S except for a finite number of points or a line segment under our sequential covering. Therefore, $\cup_{v=1}^{N-1} C_{v}$ is in an extreme state if and only if at least one endpoint of the interval, which has the above mentioned spherical distance \bar{r}_{N-1}, comes on the perimeter ∂C_{N-2}. Further, when there are two or more uncovered points, the spherical distance of any pair of these uncovered points is less or equal to \bar{r}_{N-1} since the largest interval is assumed to be \bar{r}_{N-1}. Then, we can put the center M_{N} of C_{N} at one of the uncoverd points. At this moment, we see that $\cup_{v=1}^{N} C_{v}$ which contains W_{N-1} covers S without any gap. Then, we notice the fact that r_{N} is equal to \bar{r}_{N-1}. In this paper, we calculate each solution for $N=10,11$, and 12 using above fact.

Refer to I for detailed explanations of r_{N} and \bar{r}_{N-1}.

3. Results

3.1. $N=10$

According to the considerations and results for $N=7,8$, and 9 of I , the angular radius for $N=10$ should be shorter than $r_{9}=\cos ^{-1}(1 / 3) \approx 1.23096 \mathrm{rad}$ and should be larger than $\tan ^{-1} 2 \approx 1.10715 \mathrm{rad}$. Therefore, let us consider the case for $N=10$ under the assumption $\tan ^{-1} 2 \leq r \leq r_{9}$. Even if our answer for $N=10$ is obtained by this assumption $\tan ^{-1} 2 \leq r$, we will also consider the range of $r<\tan ^{-1} 2$ later.

If two spherical caps C_{a} (the coordinates of the center: $\left.\left(a_{1}, a_{2}, a_{3}\right)\right)$ and C_{b} (the coordinates of the center: $\left.\left(b_{1}, b_{2}, b_{3}\right)\right)$ that satisfy $M_{b} \in \partial C_{a}$ intersect, we will have the coordinates (x, y, z) of cross points of the perimeters ∂C_{a} and ∂C_{b} by solving the following simultaneous equations:

$$
\left\{\begin{array}{l}
a_{1} x+a_{2} y+a_{3} z=\cos r \tag{3}\\
b_{1} x+b_{2} y+b_{3} z=\cos r \\
x^{2}+y^{2}+z^{2}=1
\end{array}\right.
$$

Note that there are two cross points of ∂C_{a} and ∂C_{b}. When $\left(a_{1}, a_{2}, a_{3}\right)=(0,0,-1)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(\sin r, 0,-\cos r)$, we get

$$
\left\{\begin{array}{l}
-z=\cos r \tag{4}\\
\sin r \cdot x-\cos r \cdot z=\cos r \\
x^{2}+y^{2}+z^{2}=1
\end{array}\right.
$$

When $K_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $K_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ are the solutions of simultaneous Eq. (4), the coordinates of cross points of ∂C_{a} and ∂C_{b} are as follows:

$$
\begin{align*}
& \left(x_{1}, y_{1}, z_{1}\right)=\left(-\frac{\cos r(\cos r-1)}{\sin r}, \frac{(\cos r-1) \sqrt{2 \cos r+1}}{\sin r},-\cos r\right) \tag{5}\\
& \left(x_{2}, y_{2}, z_{2}\right)=\left(-\frac{\cos r(\cos r-1)}{\sin r},-\frac{(\cos r-1) \sqrt{2 \cos r+1}}{\sin r},-\cos r\right) \tag{6}
\end{align*}
$$

First, as in the cases of $N=7,8$, and 9 in I, the centers M_{1}, M_{2}, and M_{3} are placed at $(0,0,-1), K_{1}$, and $(\sin r, 0,-\cos r)$, respectively. At this time, from Theorem 1 in I, the set $\cup_{v=1}^{3} C_{v}$ is in an extreme state when the centers M_{1}, M_{2}, and M_{3} satisfy the relations $d_{s}\left(M_{1}, M_{2}\right)=d_{s}\left(M_{1}, M_{3}\right)=d_{s}\left(M_{2}, M_{3}\right)=r$. Then, let K_{3} be the one of the cross points of the perimeters ∂C_{1} and ∂C_{2}, and let it be outside C_{3}. In addition, let K_{4} be one of the cross points of ∂C_{2} and ∂C_{3}, and let it not be the south pole $(0,0,-1)$. The explicit expressions of cross points K_{3} and K_{4} are given in Appendix.

Then, from the cases of $N=7,8$, and 9 in I, we assume that the allocation of points K_{2} for M_{4} satisfies the condition that $\cup_{v=1}^{4} C_{v}$ is in an extreme state. It is because, in the range $\tan ^{-1} 2 \leq r<\pi / 2$, our computations show that the area $A\left(W_{3} \cap C_{4}\right)$ is maximum when M_{4} is put at K_{2} as we will see below. Let us place the center M_{4} at K_{4} and move it to K_{2} along the $\operatorname{arc} K_{4} K_{2}$ of C_{3}. We calculate the area $A\left(W_{3} \cap C_{4}\right)$ against the moving point M_{4} numerically for several fixed values of r among $\tan ^{-1} 2 \leq r<\pi / 2$. The results are shown in Fig. 1. In this figure, the horizontal axis is the position of M_{4} on the arc $K_{4} K_{2}$ of C_{3} and the vertical axis is the area $A\left(W_{3} \cap C_{4}\right)$. In our computation, the arc $K_{4} K_{2}$ is divided into 100 equal intervals and the area $A\left(W_{3} \cap C_{4}\right)$ is calculated on 101 end points of the intervals. Hereafter, the similar computations are performed for determination of centers of spherical caps (see Figs. 2, 4, and 7). As to the two values of r in Fig. 1, we find that this curve of $A\left(W_{3} \cap C_{4}\right)$ is symmetrical at the center of the arc $K_{4} K_{2}$ (it is evident from the spherical symmetry) and $A\left(W_{3} \cap C_{4}\right)$ is maximum at both ends. The same fact as above would hold for every values of r in the range $\tan ^{-1} 2 \leq r<\pi / 2$. Therefore, we expect that $\cup_{v=1}^{4} C_{v}$ is in an extreme state if and only if M_{4} is put at K_{2} or K_{4} for $\tan ^{-1} 2 \leq r<\pi / 2$. To make sure, we shall check that these points K_{2} and K_{4} satisfy the condition that $\cup_{v=1}^{4} C_{v}$ is in an extreme state after obtaining the exact values of the angular radius r at the last paragraph in this subsection.

Fig. 1. The curve of $A\left(W_{3} \cap C_{4}\right)$ when M_{4} is moved on the $\operatorname{arc} K_{4} K_{2}$ of C_{3}. Here, as in the cases of $N=7,8$, and 9 in I , the $\operatorname{arc} K_{4} K_{2}$ is divided into 100 equal intervals and the area $A\left(W_{3} \cap C_{4}\right)$ is calculated on 101 end points of the intervals. Note that the curve of $r \simeq 1.10715$ corresponds to the case of $r=\tan ^{-1} 2$. The values of r of other curves are described in the text.

Therefore, we choose M_{4} on the point K_{2}. Then, let $K_{5}=\left(x_{5}, y_{5}, z_{5}\right)$ be one of the cross points of perimeters ∂C_{4} and ∂C_{1}, and let it be outside C_{3}. Further, let $K_{6}=\left(x_{6}, y_{6}, z_{6}\right)$ be one of the cross points of ∂C_{4} and ∂C_{3}, and let it not be the south pole $(0,0,-1)$. The explicit expressions of cross points K_{5} and K_{6} are given in Appendix.

Next we calculate the area $A\left(W_{4} \cap C_{5}\right)$ when M_{5} is put at a certain point on the $\operatorname{arc} K_{6} K_{5}$ of C_{4} and is moved on the arc. Since the fact that $A\left(W_{i-1} \cap C_{i}\right)$ is maximum with the restriction $M_{i} \in \partial C_{i-1}$ is the same as that $A\left(\left(W_{i-1} \cup C_{i}\right)^{c}\right)$ is maximum with the restriction $M_{i} \in \partial C_{i-1}$, in order to simplify calculation, we calculate $A\left(\left(W_{4} \cup C_{5}\right)^{c}\right)$ against the moving point M_{5} numerically for several fixed values of r among $\tan ^{-1} 2 \leq r<\pi / 2$. Here, the computation is performed as in the determination of M_{4}. Figure 2(a) shows the results. In this figure, the horizontal axis is the position of M_{5} on the $\operatorname{arc} K_{6} K_{5}$ of C_{4} and the vertical axis is the area $A\left(\left(W_{4} \cup C_{5}\right)^{c}\right)$. As a result, for the two values of r in Fig. 2(a), the curve of $A\left(\left(W_{4} \cup C_{5}\right)^{c}\right)$ is symmetrical at the center of the arc $K_{6} K_{5}$ (it is evident from the spherical symmetry) and $A\left(\left(W_{4} \cup C_{5}\right)^{c}\right)$ is maximum when M_{5} is placed on K_{6} or K_{5}. The same fact as above would hold for every values of r in the range $\tan ^{-1} 2 \leq r<\pi / 2$. Therefore, we expect that $\cup_{v=1}^{5} C_{v}$ is in an extreme state if and only if M_{5} is put at K_{5} or K_{6} for $\tan ^{-1} 2 \leq r<\pi / 2$. To make sure, we shall check whether the point K_{5} and K_{6} such points after obtaining the exact values of the angular radius r at the last paragraph in this subsection like the case of M_{4}. We choose M_{5} on the point K_{5} as in the cases of $N=7,8$, and 9 in I. Then, let $K_{7}=$ $\left(x_{7}, y_{7}, z_{7}\right)$ be one of the cross points of the perimeters ∂C_{5} and ∂C_{4}, and let it be outside of C_{1}. Similarly, let $K_{8}=\left(x_{8}, y_{8}, z_{8}\right)$ be one of the cross points of ∂C_{5} and ∂C_{2}, and let it be outside of C_{1}. The exact coordinates of K_{7} and K_{8} are also given in Appendix.

When each $M_{1}, M_{2}, M_{3}, M_{4}$, and M_{5} is placed at $(0,0,-1), K_{1},(\sin r, 0,-\cos r), K_{2}$, and K_{5}, respectively, the shape of the uncovered region $\left(W_{5}\right)^{c}$ is formed as a kite $K_{8} K_{4} K_{6} K_{7}$ on the unit sphere (see Fig. 3). We note the sides of the kite $K_{8} K_{4} K_{6} K_{7}$ are not geodesic arcs

Fig. 2. (a) The curve of $A\left(\left(W_{4} \cup C_{5}\right)^{c}\right)$ when M_{5} is moved on the arc $K_{6} K_{5}$ of C_{4}. (b) The curve of $A\left(\left(W_{5} \cup C_{6}\right)^{c}\right)$ when M_{6} is moved on the arc $K_{7} K_{8}$ of C_{5}. The similar computation method as in Fig. 1 is taken. See the legend in Fig. 1.
but are perimeters of spherical caps. From the configuration of the vertices K_{8}, K_{4}, K_{6}, and K_{7} of the kite $K_{8} K_{4} K_{6} K_{7}$, for the range $\tan ^{-1} 2 \leq r<\pi / 2$, the relations of spherical distance between each vertices always hold as follows:

$$
\left\{\begin{array}{l}
d_{s}\left(K_{8}, K_{4}\right)=d_{s}\left(K_{8}, K_{7}\right), \tag{7}\\
d_{s}\left(K_{6}, K_{4}\right)=d_{s}\left(K_{6}, K_{7}\right), \\
d_{s}\left(K_{6}, K_{4}\right)<d_{s}\left(K_{8}, K_{4}\right)<d_{s}\left(K_{6}, K_{8}\right), \\
d_{s}\left(K_{6}, K_{4}\right)<d_{s}\left(K_{4}, K_{7}\right)<d_{s}\left(K_{6}, K_{8}\right) .
\end{array}\right.
$$

View Point: $(0,0,10)$

Sketch of Kite

Fig. 3. The kite $K_{8} K_{4} K_{6} K_{7}$ on unit sphere.

In addition, for $\tan ^{-1} 2 \leq r<\cos ^{-1}((2 \sqrt{2}-1) / 7)$, there hold the following relations of spherical distance between each vertices of the kite $K_{8} K_{4} K_{6} K_{7}$.

$$
\begin{equation*}
d_{s}\left(K_{6}, K_{4}\right) \leq r<d_{s}\left(K_{4}, K_{7}\right)<d_{s}\left(K_{8}, K_{4}\right) \tag{8}
\end{equation*}
$$

Note that we find numerically that these relations (7) and (8) hold by using mathematical software. In passing, $\cos ^{-1}((2 \sqrt{2}-1) / 7) \approx 1.30653 \mathrm{rad}$ is equal to the upper bound r_{8} for $N=8$ (Sugimoto and Tanemura, 2003, 2004, 2006).

Now, we want to place five centers of $C_{6}, C_{7}, C_{8}, C_{9}$, and C_{10} in the uncovered kite $K_{8} K_{4} K_{6} K_{7}$ under the Minkowski condition. In this kite, we need to consider five points which keep spherical distance r with each other.

Here, we search the position of M_{6} which satisfies the condition that $A\left(\left(W_{5} \cup C_{6}\right)^{c}\right)$ is maximum with the restriction $M_{6} \in \partial C_{5}$ (i.e. $\cup_{v=1}^{6} C_{v}$ is in an extreme state). From the restriction $M_{6} \in \partial C_{5}, M_{6}$ is put at a certain point on the arc $K_{7} K_{8}$ of C_{5} and, during M_{6} is moved on the arc $K_{7} K_{8}$ of C_{5}, we calculate $A\left(\left(W_{5} \cup C_{6}\right)^{c}\right)$ against the moving point M_{6} numerically for several fixed values of r among $\tan ^{-1} 2 \leq r<r_{7}=\cos ^{-1}(1-(4 / \sqrt{3}) \times$ $\cos (7 \pi / 18)) \approx 1.35908$ rad. Figure $2(b)$ shows the graph of computational results. In this figure, the horizontal axis is the position of M_{6} on the $\operatorname{arc} K_{7} K_{8}$ of C_{5} and the vertical axis is the area $A\left(\left(W_{5} \cup C_{6}\right)^{c}\right)$. As a result, we find that $A\left(\left(W_{5} \cup C_{6}\right)^{c}\right)$ is maximum when M_{6} is put on K_{8}. Therefore, we expect that $\cup_{v=1}^{6} C_{v}$ is in an extreme state if and only if M_{6} is put at K_{8} in the range $\tan ^{-1} 2 \leq r<r_{7}$. We shall check that K_{8} is such point after obtaining the exact values of the angular radius r as in the cases of M_{4} and M_{5}. We choose here M_{6} on the point K_{8}. Let $K_{9}=\left(x_{9}, y_{9}, z_{9}\right)$ be one of the cross points of the perimeters ∂C_{6} and ∂C_{2}, and let it be outside of C_{1}. Similarly, let $K_{10}=\left(x_{10}, y_{10}, z_{10}\right)$ be one of the cross points of ∂C_{6} and ∂C_{5}, and let it be outside of C_{1}. The exact coordinates of K_{9} and K_{10} are also given in Appendix. Here, let us assume two points $K_{11} \in \partial C_{3}$, and $K_{12} \in \partial C_{4}$. In addition, we suppose K_{9}, K_{10}, K_{11}, and K_{12} satisfy the relations

$$
\begin{align*}
& d_{s}\left(K_{8}, K_{9}\right)=d_{s}\left(K_{8}, K_{10}\right)=d_{s}\left(K_{9}, K_{10}\right) \\
& \quad=d_{s}\left(K_{9}, K_{11}\right)=d_{s}\left(K_{10}, K_{12}\right)=d_{s}\left(K_{11}, K_{12}\right) . \tag{9}
\end{align*}
$$

Then, we see that $K_{8} K_{9} K_{10}$ is a spherical equilateral triangle and that $K_{9} K_{11} K_{12} K_{10}$ is a spherical square (see Fig. 3). If such an arrangement of vertices K_{9}, K_{10}, K_{11}, and K_{12} is actually possible, the upper bound $r_{10}\left(\bar{r}_{9}\right)$ is considered to be equal to a side-length (e.g., the spherical distance between the points K_{9} and K_{11}) of the spherical square $K_{9} K_{11} K_{12} K_{10}$. Then, if M_{7}, M_{8}, and M_{9} are placed on the points K_{9}, K_{10}, and K_{12}, respectively, the surface S is covered by the set $\cup_{v=1}^{9} C_{v}$ except for the point K_{11}. That is, our sequential covering is realized. At this time, K_{11} and K_{12} are just cross points of ∂C_{7} and ∂C_{3}, and ∂C_{8} and ∂C_{4}, respectively. Note that the points K_{9} and K_{10} are the positions such that $\cup_{v=1}^{7} C_{v}$ and $\cup_{v=1}^{8} C_{v}$ are in an extreme state, respectively. However, it is not checked yet that K_{9} and K_{10} are such positions. We shall check these facts after obtaining the exact values of the angular radius r and the coordinates of K_{11} and K_{12}.

From the above consideration that our r is equal to a side-length of spherical square $K_{9} K_{11} K_{12} K_{10}$, the equation $r=d_{s}\left(K_{9}, K_{11}\right)$, for instance, should be satisfied. Then, we get the exact value of r which satisfies this equation. Therefore, to begin with, we calculate the coordinates of the points K_{9} and K_{11} which satisfy (9). Since the point K_{9} is a cross point of the perimeters ∂C_{6} and ∂C_{2}, the coordinates of K_{9} are calculable by using (3), (5), and the coordinates of K_{8} in Appendix like the case of $N=9$ in I. The result is given in Appendix. Next, we need to calculate the coordinates of K_{11} without using the coordinates of K_{9}. Otherwise, we cannot get an equation of r in a closed form. So we pay attention to the spherical distance $\ell=d_{s}\left(K_{8}, K_{11}\right)$. Then, by applying the spherical cosine theorem to the spherical isosceles triangle $K_{8} K_{9} K_{11}$ of legs $d_{s}\left(K_{8}, K_{9}\right)=d_{s}\left(K_{9}, K_{11}\right)=r$, $\cos \ell$ may be written as follows:

$$
\cos \ell=\frac{3 \cos ^{3} r+2 \cos ^{2} r-\cos r-2\left(1-\cos ^{2} r\right) \sqrt{\cos r+2 \cos ^{2} r}}{(1+\cos r)^{2}} .
$$

It is because the inner angle at K_{9} of the spherical isosceles triangle $K_{8} K_{9} K_{11}$ is the sum of the interior angles of spherical equilateral triangle $K_{8} K_{9} K_{10}$ and spherical square $K_{9} K_{11} K_{12} K_{10}$. In this connection, the inner angle of spherical equilateral triangle of side-length r is

$$
\cos ^{-1}\left(\frac{\cos r}{\cos r+1}\right)
$$

and the inner angle of spherical square of side-length r is

$$
\cos ^{-1}\left(\frac{\cos r-1}{\cos r+1}\right)
$$

As a result, we can obtain the coordinates of $K_{11}=\left(x_{11}, y_{11}, z_{11}\right)$ by using simultaneous equations $d_{s}\left(K_{11}, M_{3}\right)=r, d_{s}\left(K_{8}, K_{11}\right)=\ell$, and $x_{11}^{2}+y_{11}^{2}+z_{11}^{2}=1$. Here, $M_{3}=(\sin r, 0$, $-\cos r$) and refer to Appendix for the coordinates of K_{8}. The explicit coordinates of cross point K_{11} are shown in Appendix.

From $d_{s}\left(K_{i}, K_{j}\right)=\cos ^{-1}\left(x_{i} \cdot x_{j}+y_{i} \cdot y_{j}+z_{i} \cdot z_{j}\right)$ and the coordinates of K_{9} and K_{11} in Appendix, we get the equation of the following type

$$
r=d_{s}\left(K_{9}(r), K_{11}(r)\right) .
$$

Then, the equation is solved against r by using mathematical software. The form of the solution and its value is obtained as

$$
\begin{align*}
r_{10} & =\bar{r}_{9}=\tan ^{-1}\left(\left(\frac{4}{\sqrt{3}} \cos \left(\frac{1}{3} \tan ^{-1}\left(\frac{\sqrt{3} \sqrt{229}}{9}\right)\right)+3\right)^{\frac{1}{2}}\right) \tag{10}\\
& \approx 1.1544798334192707378319618404230 \cdots \mathrm{rad} .
\end{align*}
$$

By using (10), we find numerically at an arbitrary precision that the relation (9) is attained as we expected. Note that we get also another solution $r \approx 1.192753 \cdots \operatorname{rad}$ (the exact equation for this value is omitted since it is complicated) in the range of $\tan ^{-1} 2 \leq r \leq$ $\cos ^{-1}(1 / 3) \approx 1.23096 \mathrm{rad}$ when $r=d_{s}\left(K_{9}, K_{11}\right)$ is solved against r. But, for $r \approx 1.192753 \cdots$ rad, we find $d_{s}\left(K_{11}, K_{12}\right)<r$ numerically. Namely, K_{11} and K_{12} do not satisfy the relation (9). Therefore, when M_{9} is put at K_{12}, C_{9} will cover K_{11}. Thus, we can exclude this answer $r \approx 1.192753 \cdots \mathrm{rad}$ as the solution of inadequacy.

As we have noted, we check here whether the allocations of the points $K_{2}, K_{5}, K_{8}, K_{9}$, and K_{10} for $M_{4}, M_{5}, M_{6}, M_{7}$, and M_{8}, respectively, satisfy the condition that $\cup_{v=1}^{4} C_{v}$, $\cup_{v=1}^{5} C_{v}, \cup_{v=1}^{6} C_{v}, \cup_{v=1}^{7} C_{v}$, and $\cup_{v=1}^{8} C_{v}$ are in an extreme state, each, by using the value of (10). First, from the considerations for determinations of M_{i} mentioned above, we checked numerically that the area $A\left(W_{i-1} \cap C_{i}\right)$ (or $A\left(\left(W_{i-1} \cup C_{i}\right)^{c}\right)$) are maximum with the restriction $M_{i} \in \partial C_{i-1}\left(\cup_{v=1}^{i} C_{v}\right.$ are in an extreme state) when M_{4}, M_{5}, and M_{6} are put at K_{2}, K_{5}, and K_{8}, respectively. Then, these results are graphically presented by the curve of $r \simeq$ 1.15448 corresponding to the value of (10) in Figs. 1 and 2. Therefore, for $N=10$, our choice of M_{4}, M_{5}, and M_{6} are justified. Next, we examine the position of M_{7} where $A\left(\left(W_{6} \cup C_{7}\right)^{c}\right)$ is maximum. Then, we calculate $A\left(\left(W_{6} \cup C_{7}\right)^{c}\right)$ against the moving point M_{7} on the arc $K_{10} K_{9}$ of C_{6} numerically for several fixed values of r among $\tan ^{-1} 2 \leq r<r_{8}=$ $\cos ^{-1}((2 \sqrt{2}-1) / 7) \approx 1.30653 \mathrm{rad}$. As a result, the curve of $A\left(\left(W_{6} \cup C_{7}\right)^{c}\right)$ is symmetrical at the center of the arc $K_{10} K_{9}$ (it is evident from the shape of uncovered region $\left.\left(W_{6}\right)^{c}\right)$ and $A\left(\left(W_{6} \cup C_{7}\right)^{c}\right)$ is maximum at both end for the two values of r in Fig. 4(a). The same fact as above would hold for every values of r in the range $\tan ^{-1} 2 \leq r<r_{8}$. Figure 4(a) illustrates the result of computation for M_{7}. In this figure, the horizontal axis is the position of M_{7} on the arc $K_{10} K_{9}$ of C_{6} and the vertical axis is $A\left(\left(W_{6} \cup C_{7}\right)^{c}\right)$. Then, the result is graphically presented by the curve of $r \simeq 1.15448$ corresponding to the value of (10) in Fig. 4(a).

Fig. 4. (a) The curve of $A\left(\left(W_{6} \cup C_{7}\right)^{c}\right)$ when M_{7} is moved on the arc $K_{10} K_{9}$ of C_{6}. (b) The curve of $A\left(\left(W_{7} \cup C_{8}\right)^{c}\right)$ when M_{8} is moved on the arc $K_{10} K_{11}$ of C_{7}. The similar computation method as in Fig. 1 is taken. See the legend in Fig. 1.

Therefore, for the value of (10), we check numerically that $\cup_{v=1}^{7} C_{v}$ are in an extreme state if and only if M_{7} is put at K_{9} or K_{10}. In this paper, we choose M_{7} on the point K_{9}. Then, in order to find the optimal position of M_{8}, let us place M_{8} at K_{10} and move it to K_{11} along the arc $K_{10} K_{11}$ of C_{7}. Therefore, we calculate $A\left(\left(W_{7} \cup C_{8}\right)^{c}\right)$ against the moving point M_{8} on the arc $K_{10} K_{11}$. When r is equal to (10), we find numerically that $A\left(\left(W_{7} \cup C_{8}\right)^{c}\right)$ is maximum with the restriction $M_{8} \in \partial C_{7}\left(\cup_{v=1}^{8} C_{v}\right.$ is in an extreme state) if and only if M_{8} is put at K_{10}. The curve of $r \simeq 1.15448$ in Fig. 4(b) presents this result. In Fig. 4(b), the horizontal axis is the position of M_{8} on the arc $K_{10} K_{11}$ of C_{7} and the vertical axis is $A\left(\left(W_{7} \cup C_{8}\right)^{c}\right)$. Hence, for $N=10$, our choices for M_{7} and M_{8} are justified.

As mentioned above, when eight spherical caps whose angular radius is the value of (10) are placed on S according to our sequential covering, the uncovered region $\left(W_{8}\right)^{c}$ is a

Fig. 5. (a) Our sequential covering for $N=10$. (b) Our solution of Tammes problem for $N=10$. Both viewpoints are $(0,0,10)$. In this example, the coordinates of the centers are respectively $(0,0,-1),(0.26335,-0.87585$, $-0.40439)$, ($0.91458,0,-0.40439$), ($0.26335,0.87585,-0.40439$), ($-0.76292,0.50440,-0.40439$), $(-0.77575,-0.57681,-0.25593),(-0.13883,-0.78326,0.60599),(-0.79006,0.092588,0.60599),(0.084546$, $0.74290,0.66405)$, and $(0.735778,-0.13295,0.66405)$.
quadrangle on S. Then, from Corollary of Theorem 2 in I and the relations for four vertices of $\left(W_{8}\right)^{c}$, we find that $d_{s}\left(K_{11}, K_{12}\right)$ is equal to the spherical distance of the largest interval in the uncovered region $\left(W_{8}\right)^{c}$. Therefore, \bar{r}_{9} is equal to (10). In addition, we find that $\cup_{v=1}^{9} C_{v}$ is in an extreme state if and only if M_{9} is put on the point $K_{12} \in \partial C_{8}$. Therefore, we choose M_{9} on K_{12}, and then K_{11} is the unique uncovered point on S.

For $N=10$, we initially assumed that r should be in the range $\left(\tan ^{-1} 2, \cos ^{-1}(1 / 3)\right]$. Then, as a result of the investigation, our upper bound r_{10}, (10), has fallen within the range $\left(\tan ^{-1} 2, r_{9}\right]$. However, one might suspect that the fact is due to the assumption. So, if r is in the range $\left(0, \tan ^{-1} 2\right.$, we examine whether W_{9} is able to cover S except for finite points. When r is assumed to be equal to $\tan ^{-1} 2$, we find that the set W_{9} leave an uncovered region on S. For its detail, refer to the consideration of Subsec. 3.2. Furthermore, for $0<r<$ $\tan ^{-1} 2$, the uncovered region would become still bigger. Hence, the upper bounds r_{10} cannot be in the range $\left(0, \tan ^{-1} 2\right]$ as in the cases of $N=8$ and 9 in I. Thus, we note that our initial assumption $\tan ^{-1} 2<r \leq r_{9}$ is also confirmed $\left(r=\tan ^{-1} 2\right.$ is excluded from the above consideration).

As a result of consideration above, the set W_{9} covers S except for K_{11}. Therefore, when M_{10} is put at the point K_{11}, the whole of S is covered by $\cup_{v=1}^{10} C_{v}$ which contains W_{9} (see Fig. 5(a)). Thus, our consideration that our r is equal to the upper bound r_{10} (a side-length of the spherical square $K_{9} K_{11} K_{12} K_{10}$ which satisfies (9)) is confirmed and (10) is certainly the upper bound for $N=10$.

3.2. $N=11$ and 12

It is expected that the solution r_{11} for $N=11$ should not be larger than r_{10}. Then, we assume $r_{11} \leq r \leq r_{10}$. Further, we assume $\tan ^{-1} 2 \leq r_{11}$. Hence, the relations (7) and (8) hold because of the assumption $\tan ^{-1} 2 \leq r_{11} \leq r \leq r_{10}$. Then, we can use the same configuration of the first five spherical caps of the case $N=10$. When the fifth spherical cap C_{5} is put on the sphere, in the same way as the foregoing subsection, a quadrilateral kite $K_{8} K_{4} K_{6} K_{7}$ on the sphere might be formed as the uncovered region. Further, because of the condition that

Fig. 6. The kite $K_{8} K_{4} K_{6} K_{7}$, the spherical equilateral triangle $K_{8} K_{9} K_{10}$, and the spherical regular pentagon $K_{9} K_{11} K_{6} K_{12} K_{10}$.
$\cup_{v=1}^{6} C_{v}$ is in an extreme state, the center M_{6} should be placed again on the point K_{8}. Then, let K_{9} be one of the cross points of the perimeters ∂C_{6} and ∂C_{2}, and let it be outside C_{1}. Similarly, let K_{10} be one of the cross points of ∂C_{6} and ∂C_{5}, and let it be outside C_{1}. At this time, the uncovered region $\left(W_{6}\right)^{c}$ is reduced to the pentagon $K_{9} K_{4} K_{6} K_{7} K_{10}$ which is bounded by perimeters of spherical caps.

Before considering the case of $N=11$, we look back upon the cases of $N=9$ and 10. For $N=9$, we considered two spherical equilateral triangles $K_{8} K_{9} K_{10}$ and $K_{9} K_{6} K_{10}$ in the kite $K_{8} K_{4} K_{6} K_{7}$ on the sphere. At that time, we placed the centers of four caps on each vertices of two spherical equilateral triangles and obtained the upper bound r_{9} by using the relation that the angular radius r is equal to a side-length of the spherical equilateral triangle (Sugimoto and Tanemura, 2003, 2006). For $N=10$, in Subsec. 3.1, we considered the spherical equilateral triangle $K_{8} K_{9} K_{10}$ and the spherical square $K_{9} K_{11} K_{12} K_{10}$ (see Fig. 3). Then, the centers of five caps are put on each vertices and the upper bound r_{10} is obtained by using the relation that r is equal to a side-length of the spherical square $K_{9} K_{11} K_{12} K_{10}$.

Now, for $N=11$, we assume the spherical equilateral triangle $K_{8} K_{9} K_{10}$ and the spherical regular pentagon of side-length r on the kite $K_{8} K_{4} K_{6} K_{7}$, in order to place six more caps under the Minkowski condition. Therefore, here, let us assume $K_{9}, K_{10}, K_{11} \in \partial C_{2}$ or ∂C_{3}, and $K_{12} \in \partial C_{4}$ or ∂C_{5} satisfy

$$
\begin{align*}
& d_{s}\left(K_{8}, K_{9}\right)=d_{s}\left(K_{8}, K_{10}\right)=d_{s}\left(K_{9}, K_{10}\right)=d_{s}\left(K_{9}, K_{11}\right) \tag{11}\\
& \quad=d_{s}\left(K_{11}, K_{6}\right)=d_{s}\left(K_{6}, K_{12}\right)=d_{s}\left(K_{12}, K_{10}\right) .
\end{align*}
$$

If the arrangement of vertices K_{9}, K_{10}, K_{11}, and K_{12} are actually possible, we obtain the upper bound $r_{11}\left(\bar{r}_{10}\right)$ by using the relation that the angular radius r is equal to a side-length of the spherical regular pentagon $K_{9} K_{11} K_{6} K_{12} K_{10}$ as the cases of $N=9$ and 10 (see Fig. 6). Then, for example, when $M_{i}(i=6, \ldots, 10)$ are placed on the points $K_{8}, K_{9}, K_{10}, K_{12}$, and K_{6}, respectively, we guess that $\cup_{v=1}^{i} C_{v}$ is in an extreme state and that K_{11} is an uncovered point on S. Therefore, finally, M_{11} can be placed at K_{11}. However, it is not checked yet that K_{9}, K_{10}, K_{12}, and K_{6} satisfy such a condition that $\cup_{v=1}^{i} C_{v}$ is in an extreme state for $i=7, \ldots, 10$, respectively. We shall check this fact after obtaining the exact values of the angular radius
r and the coordinates of K_{11} and K_{12}.
Now, by applying the spherical cosine and sine theorems, the inner angle of spherical regular pentagon of side-length r is given as follows:

$$
\cos ^{-1}\left(\frac{2 \cos r-1-\sqrt{5}}{2(\cos r+1)}\right)
$$

Here, we pay attention to the spherical isosceles triangle $K_{9} K_{11} K_{6}$ whose legs satisfy $d_{s}\left(K_{11}, K_{9}\right)=d_{s}\left(K_{11}, K_{6}\right)=r$. Then, by applying the spherical cosine theorem to this isosceles triangle $K_{9} K_{11} K_{6}$, we have

$$
\begin{equation*}
d_{s}\left(K_{6}, K_{9}\right)=\cos ^{-1}\left(\cos ^{2} r+\frac{(1-\cos r)(2 \cos r-1-\sqrt{5})}{2}\right) \tag{12}
\end{equation*}
$$

Note that the left hand side of (12) is presented as the function of r by using the coordinates of K_{6} and K_{9}. Refer to Appendix for the explicit coordinates of K_{6} and K_{9}. Equation (12) is solved against r by using mathematical software. As a result, the value of r is obtained as

$$
\begin{equation*}
r=\tan ^{-1} 2 \tag{13}
\end{equation*}
$$

Therefore, the side-length of spherical regular pentagon $K_{9} K_{11} K_{6} K_{12} K_{10}$ which satisfies the relation (11) is $\tan ^{-1} 2$.

Here, from the relation (8), let us consider the special case $r=d_{s}\left(K_{6}, K_{4}\right)$. When $r=d_{s}\left(K_{6}, K_{4}\right)$ is solved against r by using mathematical software, we get again the solution $r=\tan ^{-1} 2$. Therefore, $r=d_{s}\left(K_{6}, K_{4}\right)=d_{s}\left(K_{6}, K_{7}\right)=\tan ^{-1} 2$ from the relation (7). On the other hand, from the fact that the side-length of spherical regular pentagon $K_{9} K_{11} K_{6} K_{12} K_{10}$ which satisfies (11) is $\tan ^{-1} 2, d_{s}\left(K_{6}, K_{11}\right)=d_{s}\left(K_{6}, K_{12}\right)=\tan ^{-1} 2$. Thus, we find the result as follows:

$$
K_{11} \equiv K_{4} \quad \text { and } \quad K_{12} \equiv K_{7}
$$

if and only if $r=\tan ^{-1} 2$. It follows that the spherical regular pentagon $K_{9} K_{11} K_{6} K_{12} K_{10}$ which satisfies (11) is identical with the spherical regular pentagon $K_{9} K_{4} K_{6} K_{7} K_{10}$ of side-length $\tan ^{-1} 2$. We note that the vertex K_{8} of kite $K_{8} K_{4} K_{6} K_{7}$ is on the perimeter of the first spherical cap C_{1} then. In addition, we have shown that $\tan ^{-1} 2$ is equal to the upper bound of the range of angular diameter for the kissing number $k=5$ (SUGIMOTO and TANEMURA, 2003, 2006). Therefore, as a result, we find that the spherical regular pentagon $K_{9} K_{4} K_{6} K_{7} K_{10}$ satisfies the relation as follows:

$$
\begin{align*}
& d_{s}\left(K_{8}, K_{9}\right)=d_{s}\left(K_{8}, K_{10}\right)=d_{s}\left(K_{9}, K_{10}\right)=d_{s}\left(K_{9}, K_{4}\right) \\
& =d_{s}\left(K_{4}, K_{6}\right)=d_{s}\left(K_{6}, K_{7}\right)=d_{s}\left(K_{7}, K_{10}\right)=d_{s}\left(P, K_{9}\right) \tag{14}\\
& =d_{s}\left(P, K_{4}\right)=d_{s}\left(P, K_{6}\right)=d_{s}\left(P, K_{7}\right)=d_{s}\left(P, K_{10}\right)=\tan ^{-1} 2
\end{align*}
$$

Fig. 7. The curve of $A\left(\left(W_{8} \cup C_{9}\right)^{c}\right)$ when M_{9} is moved on the arc $K_{7} P$ of C_{8}. The similar computation method as in Fig. 3 is taken. See the legend in Fig. 3.
where P is the center point of spherical regular pentagon $K_{9} K_{4} K_{6} K_{7} K_{10}$. From the above considerations, for $\tan ^{-1} 2 \leq r \leq r_{10}$, we see that the maximal spherical regular pentagon of side-length r on the uncovered region $\left(W_{6}\right)^{c}$ is coincident with the spherical regular pentagon $K_{9} K_{4} K_{6} K_{7} K_{10}$ which satisfies the relation (14).

Then, for $N=11$, let us examine whether our sequential covering is actually possible when the angular radius r of caps is equal to $\tan ^{-1} 2 \approx 1.10715$. First, we find numerically that the allocations of points K_{2}, K_{5}, K_{8}, and K_{9} for M_{4}, M_{5}, M_{6}, and M_{7}, respectively, satisfy the condition that each $A\left(W_{i-1} \cap C_{i}\right)$ (or $A\left(\left(W_{i-1} \cup C_{i}\right)^{c}\right)$) is maximum with restriction $M_{i} \in \partial C_{i-1}\left(\cup_{v=1}^{i} C_{v}\right.$ are in an extreme state) for $i=4,5,6$ and 7 . As mentioned above, the results are indicated by the curve of $r \simeq 1.10715 \mathrm{rad}$ corresponding to $r=\tan ^{-1} 2$ in Figs. 1,2 , and $4(\mathrm{a})$. Then, we see that K_{10} is the cross point of $\partial C_{6}, \partial C_{5}$, and ∂C_{7}. Furthermore, K_{4} is the cross point of $\partial C_{2}, \partial C_{3}$, and ∂C_{7}. Therefore, from the restriction $M_{8} \in \partial C_{7}, M_{8}$ is put at a certain point on the $\operatorname{arc} K_{10} K_{4}$ of C_{7}. Then, we move M_{8} on the arc $K_{10} K_{4}$ of C_{7} and search for the position of M_{8} where the area $A\left(\left(W_{7} \cup C_{8}\right)^{c}\right)$ is maximum. For $r=\tan ^{-1} 2$, we checked numerically that $\cup_{v=1}^{8} C_{v}$ are in an extreme state if and only if M_{8} is put at K_{10} or K_{4}. The fact is graphically presented by the curve of $r \simeq 1.10715$ in Fig. 4(b). Note that the arc $K_{10} K_{11}$ in Fig. 4(b) turns out the arc $K_{10} K_{4}$ since $K_{11} \equiv K_{4}$ for $r=\tan ^{-1} 2$. Thus, in this paper, M_{8} is put at K_{10}. Then, the uncovered region $\left(W_{8}\right)^{c}$ is the quadrangle $K_{4} K_{6} K_{7} P$ on S. Next, for $r=\tan ^{-1} 2$, let us place M_{9} at K_{7} and move it to P along the $\operatorname{arc} K_{7} P$ of C_{8}, and then we search for the position of M_{9} where the area $A\left(\left(W_{8} \cup C_{9}\right)^{c}\right)$ is maximum. As a result, we find that $\cup_{v=1}^{9} C_{v}$ is in an extreme state when M_{9} is put at K_{7}. The curve of $r \simeq 1.01715$ in Fig. 7 indicates this fact. In this figure, the horizontal axis is the position of M_{9} on the arc $K_{7} P$ of C_{8} and the vertical axis is the area $A\left(\left(W_{8} \cup C_{9}\right)^{c}\right)$. Therefore, we put M_{9} at K_{7}. Then, K_{6} and P are the cross points on ∂C_{9} and the uncovered triangle $K_{4} K_{6} P$ on S is the equilateral triangle of side-length $\tan ^{-1} 2$. Hence, when M_{10} is put on the point $K_{6} \in \partial C_{9}$, we see that

Fig. 8. (a) Our sequential covering for $N=12$. (b) Our solution of Tammes problem for $N=12$. Both viewpoints are $(0,0,10)$. In this example, the coordinates of the centers are respectively $(0,0,-1),(0.27639,-0.85065$, $-0.44721),(0.89443,0,-0.44721),(0.27639,0.85065,-0.44721),(-0.72361,0.52573,-0.44721)$, $(-0.72361,-0.52573,-0.44721),(-0.27639,-0.85065,0.44721),(-0.89443,0,0.44721),(-0.27639,0.85065$, $0.44721),(0.72361,0.52573,0.44721),(0.72361,-0.52573,0.44721)$, and $(0,0,1)$.
$\cup_{v=1}^{10} C_{v}$ is in an extreme state automatically and that S is covered by the set W_{10} except for two points K_{4} (or K_{11}) and P (the center point of spherical regular pentagon $K_{9} K_{4} K_{6} K_{7} K_{10}$) from the relation (14). At this time, we see that P is the cross point of perimeters $\partial C_{7}, \partial C_{8}$, and ∂C_{9}. Furthermore, as a result of calculation by using the coordinates of K_{9}, K_{10}, and K_{7} for $r=\tan ^{-1} 2, P$ is just the north pole $(0,0,1)$ certainly. Therefore, if M_{11} is put on $K_{4} \in$ $\partial C_{10}, \cup_{v=1}^{11} C_{v}$ is in an extreme state and P is a unique uncovered point on S. Then, in order to cover whole of S, we have to put one more cap at P. In other words, when $r=\tan ^{-1} 2$, according to our sequential covering, we can put twelve caps on S under Minkowski covering. Therefore, M_{11} and M_{12} are put on K_{4} and P, respectively, then $\cup_{v=1}^{12} C_{v}$ which contains W_{11} covers the whole of S. Namely, we are able to see that $d_{s}\left(P, K_{4}\right)=\tan ^{-1} 2=\bar{r}_{11}$. Thus, we consider that $\tan ^{-1} 2$ is the upper bound r_{12} for $N=12$. As a result, we find that the positions of caps of our sequential covering for $N=12$ correspond to the regular icosahedral vertices (see Fig. 8(a)). Therefore, if all spherical caps of our sequential covering for $N=$ 12 are replaced by half-caps, all of those half-caps contact with other five half-caps and there is no space for those half-caps to move.

Then, how about r_{11} ? From the results of $N=10$ and 12, it becomes obvious that our initial assumption $r_{12}=\tan ^{-1} 2 \leq r \leq r_{10}$ is indispensable. At the time the center M_{6} is placed on the point K_{8}, we had to place five more caps of the angular radius r on the uncovered region $\left(W_{6}\right)^{c}$ under the Minkowski covering. Then, from the above considerations, we see that the maximal spherical regular pentagon of side-length $r\left(r_{12} \leq r \leq r_{10}\right)$ on $\left(W_{6}\right)^{c}$ is identical with the spherical regular pentagon $K_{9} K_{4} K_{6} K_{7} K_{10}$ which satisfies the relation (14). So, we conclude that r_{11} is equal to $r_{12}=\tan ^{-1} 2$ and use the same configuration of the first eleven spherical caps of the case $N=12$. However, when $r_{11}=\tan ^{-1} 2$, our sequential covering for $N=11$ covers S except for the point P. But, if only the eleventh cap C_{11} is replaced by a closed cap, our eleven caps can completely cover the whole of S under the Minkowski condition. Thus, for $N=11$, we need a special care as above.

Fig. 9. (a) Our solution of Tammes problem for $N=10$. (b) Our solution of Tammes problem for $N=12$. Note that the spheres are drawn with the wireframe.

4. Conclusion

From the results of Sec. 3, if all of those spherical caps are replaced by half-caps, the results of our problem for $N=10,11$, and 12 are coincident with those of the Tammes problem (see Figs. 5, 8, and 9).

Especially, we obtained in this paper the exact closed form of r_{10} for $N=10$ (see (10)), whereas Danzer have obtained the range [1.154479, 1.154480] of angular diameter for $N=10$ (DANZER, 1963). Further, Danzer have solved the Tammes problem for $N=10$ and 11 through the consideration on irreducible graphs obtained by connecting those points, among N points, whose spherical distance is exactly the minimal distance. Then he needed the independent considerations for $N=10$ and 11, respectively. However, we presented a systematic method which is different from the approach of Danzer about the Tammes problem. Namely, as shown in Sec. 3, our method is able to obtain a solution for N by using the results for the case $N-1$ or $N-2$. In addition, in this study, we have considered the Tammes (packing) problem from the standpoint of sequential covering. The advantages of our approach are that we only need to observe uncovered region in the process of packing and that this uncovered region decreases step by step as the packing proceeds.

A set of spherical caps is said to be a Minkowski set if none of its elements contains in its interior the center of another. In our study, the condition of Minkowski set of centers is called a Minkowski condition, and the covering which satisfies the Minkowski condition is called a Minkowski covering. On the other hand, replacing each spherical cap in a Minkowski set of spherical caps with a concentric caps of radius half as big as the original, Fejes Tóth (1999) called a Minkowski packing (i.e., the Minkowski packing is our packing of half-caps) and demonstrated the upper bounds for densities of a Minkowski packing and a Minkowski set. Note that their densities are sharp for $N=3,4,6$, and 12, and are asymptotically sharp for great values of N. Then, we checked that our solutions for $N=3,4,6$, and 12 are coincident with his results. In I, we defined the efficiency of covering on spherical surface. Our efficiency is the reciprocal of the density of a Minkowski set.

Therefore, our solutions for $N=3,4,6$, and 12 are the worst efficient covering under the Minkowski condition.

It is interesting to point out that our method presented in this paper will be also useful for providing a conjectured value of optimal angular radius for any N by using the already known value for $N-1$. This will be done as follows: (i) first we set the angular radius of a spherical cap by using the known exact or approximate value for $N-1$, namely, we put $r=\hat{r}_{N-1}$ where \hat{r}_{N-1} is the exact or approximate value of r for $N-1$; (ii) then we put N spherical caps with radius r through our method of sequential covering; (iii) in this stage, it is possible that the Minkowski condition will be broken especially when the N-th spherical cap is placed. If this is true, decrease the size of r so far as the Minkowski condition is satisfied and go to Step (ii). Otherwise, check if the whole of S except for a point or a line segment is covered by $N-1$ spherical caps. If it holds, the procedure ends, else increase r by a prescribed value Δr then go to Step (ii). We will be able to estimate the value of an optimal angular radius for any N by this procedure.

Throughout our paper, we used the mathematical software, Maple 8 and 9.5 , which is capable of manipulating complicate algebraic expressions exactly and is also useful for numerical computations.

The authors would like to thank Prof. L. Danzer, Univ. of Dortmund, and Prof. H. Maehara, Univ. of Ryukyu, for their helpful comments.

This research was supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for JSPS Fellows, 15•1832, and Young Scientists (B), 19740061.

Appendix: The Coordinates of $K_{i}(i=3,4,5,6,7,8,9$, and 11)
In the following, $r\left(\tan ^{-1} 2 \leq r<\pi / 2\right)$ is the angular radius.
The coordinates of $K_{i}(i=3,4,5,6,7$, and 8$)$ are shown for reader's convenience, although indicated in I.

$$
\begin{aligned}
& K_{3}=\left(x_{3}, y_{3}, z_{3}\right): \\
& \qquad\left(\frac{\sin r\left(\cos ^{2} r-2 \cos r-1\right)}{(\cos r+1)^{2}},-\frac{2 \cos r \sin r \sqrt{2 \cos r+1}}{(\cos r+1)^{2}},-\cos r\right) .
\end{aligned}
$$

$K_{4}=\left(x_{4}, y_{4}, z_{4}\right):$

$$
\left(\frac{2 \cos r \sin r(2 \cos r+1)}{(\cos r+1)^{2}},-\frac{2 \cos r \sin r \sqrt{2 \cos r+1}}{(\cos r+1)^{2}},-\frac{4 \cos ^{2} r-\cos r-1}{\cos r+1}\right)
$$

$$
\begin{aligned}
& K_{5}=\left(x_{5}, y_{5}, z_{5}\right): \\
& \qquad\left(\frac{\sin r\left(\cos ^{2} r-2 \cos r-1\right)}{(\cos r+1)^{2}}, \frac{2 \cos r \sin r \sqrt{2 \cos r+1}}{(\cos r+1)^{2}},-\cos r\right) .
\end{aligned}
$$

$$
\begin{aligned}
K_{6}= & \left(x_{6}, y_{6}, z_{6}\right): \\
& \left(\frac{2 \cos r \sin r(2 \cos r+1)}{(\cos r+1)^{2}}, \frac{2 \cos r \sin r \sqrt{2 \cos r+1}}{(\cos r+1)^{2}},-\frac{4 \cos ^{2} r-\cos r-1}{\cos r+1}\right) .
\end{aligned}
$$

$$
K_{7}=\left(x_{7}, y_{7}, z_{7}\right):
$$

$$
\left(\frac{2 \cos r \sin r(2 \cos r+1)(\cos r-1)}{(\cos r+1)^{3}}, \frac{2 \cos r \sin r(3 \cos r+1) \sqrt{2 \cos r+1}}{(\cos r+1)^{3}}\right.
$$

$$
\left.-\frac{4 \cos ^{2} r-\cos r-1}{\cos r+1}\right)
$$

$$
\begin{aligned}
K_{8}= & \left(x_{8}, y_{8}, z_{8}\right): \\
& \left(\frac{2 \cos r \sin r(\cos r-1)(2 \cos r+1)}{9 \cos ^{3} r-\cos ^{2} r-\cos r+1}, \frac{2 \cos r \sin r(\cos r-1) \sqrt{2 \cos r+1}}{9 \cos ^{3} r-\cos ^{2} r-\cos r+1}\right. \\
& \left.-\frac{4 \cos ^{4} r-\cos ^{3} r+5 \cos ^{2} r+\cos r-1}{9 \cos ^{3} r-\cos ^{2} r-\cos r+1}\right) .
\end{aligned}
$$

$$
K_{9}=\left(x_{9}, y_{9}, z_{9}\right):
$$

$$
\begin{aligned}
& \left(\frac{\sin r\left(\cos ^{3} r-5 \cos ^{2} r-\cos r+1\right)}{9 \cos ^{3} r-\cos ^{2} r-\cos r+1},-\frac{4 \sin r \cos ^{2} r \sqrt{2 \cos r+1}}{9 \cos ^{3} r-\cos ^{2} r-\cos r+1}\right. \\
& \left.-\frac{\cos r\left(\cos ^{3} r+11 \cos ^{2} r-\cos r-3\right)}{9 \cos ^{3} r-\cos ^{2} r-\cos r+1}\right) .
\end{aligned}
$$

$K_{11}=\left(x_{11}, y_{11}, z_{11}\right)$ are shown in $\cos \ell$ (see Subsec. 3.1) and the coordinates of K_{8} due to their lengthy expressions.

$$
\begin{aligned}
x_{11}= & \left(\left(x_{8} \cos \ell \cos r+y_{8}^{2} \sin r+z_{8}^{2} \sin r+z_{8} \cos \ell \sin r+x_{8} z_{8} \cos r\right) \cos r\right. \\
& +\left(\left(-\cos ^{2} \ell-2 z_{8} \cos \ell \cos ^{2} r+2 x_{8} \cos \ell \sin r \cos r+2 x_{8} z_{8} \sin r \cos r+z_{8}^{2}-2 z_{8}^{2} \cos ^{2} r\right.\right. \\
& \left.\left.\left.+y_{8}^{2}-y_{8}^{2} \cos ^{2} r\right) y_{8}^{2} \cos ^{2} r\right)^{(1 / 2)}\right) /\left(y_{8}^{2}+z_{8}^{2}+x_{8}^{2} \cos ^{2} r+2 x_{8} z_{8} \sin r \cos r-z_{8}^{2} \cos ^{2} r\right),
\end{aligned}
$$

$$
\begin{gathered}
y_{11}=\frac{\cos \ell+z_{8}}{y_{8}}-\frac{x_{8}+z_{8} \tan r}{y_{8}} x_{11}, \\
z_{11}=-1+\tan r \cdot x_{11} .
\end{gathered}
$$

REFERENCES

DANZER, L. (1963) Endliche Punktmengen auf der 2-Sphäre mit möglichst großen Minimalabstand, Universität Göttingen. (Finite Point-Set on S^{2} with Minimum Distance as Large as Possible, Discrete Mathematics, 60, 3-66 (1986).)
Fejes Tóth, L. (1972) Lagerungen in der Ebene, auf der Kugel und im Raum, 2nd ed., Springer-Verlag, Heidelberg.
Fejes Tóth, L. (1999) Minkowski circle packings on the sphere, Discrete \& Computational Geometry, 22, 161166.

Schütte, K., and Van der Waerden, B. L. (1951) Auf welcher Kugel haben 5, 6, 7, 8, oder 9 Punkte mit Mindestabstand Eins Platz?, Mathematische Annalen, 123, 96-124.
Sugimoto, T. and Tanemura, M. (2003) Packing and Minkowski covering of congruent spherical caps on a sphere, Research Memorandum, ISM, 901.
Sugimoto, T. and Tanemura, M. (2004) Packing and covering of congruent spherical caps on a sphere, Symmetry: Art and Science - 2004, ISIS-Symmetry, 230-233.
Sugimoto, T. and Tanemura, M. (2006) Packing and Minkowski covering of congruent spherical caps on a sphere for $N=2, \ldots, 9$, Forma, 21, 197-225.
Tammes, P. M. L. (1930) On the origin of number and arrangement of the places of exit on the surface of pollen grains, Recueil de Travaux Botaniques Néerlandais, 27, 1-84.

