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Betti Numbers of Defects Field

Kazuhito YAMASAKI

Department of Earth and Planetary Sciences, Faculty of Science, Kobe University, Kobe 657-8501, Japan
E-mail address: yk2000@kobe-u.ac.jp

(Received April 10, 2006; Accepted Mach 10, 2007)

Keywords:  Betti Numbers, Defects, Dislocations, Disclinations, Topology

Abstract.  The algebraic topological aspect of defects field is considered by using the
useful topological invariant: Betti numbers. We suggest that the topological nature of the
dislocation field is expressed in terms of “strength” of the dislocation corresponding to
the change in the first Betti number. We also show that Frank vectors of the disclinations
are related to the first Betti number.

1.  Introduction

In order to make an idealized mathematical description of material deformation, we
often assume that the material-space is closely approximated by continuum space. However,
the natural material-space always contains topological defects, so the continuum description
of the defects filed is necessary (EDELEN and LAGOUDAS, 1988; KLEINERT, 1989; YAMASAKI

and NAGAHAMA, 2002), and apply to various fields such as cosmic strings, seismology, and
geophysics (TESIIEYRE, 1995; KATANAEV and VOLOVICH, 1999; YAMASAKI, 2005).

One standard mathematical technique for describing defects fields is to use differential
geometry in which the metric (a “measure” of space) plays an important role (BLOOM,
1979; MIRI and RIVIER, 2002; KATANAEV, 2005). The defects field such as dislocations and
disclinations can be recognized as two geometric objects consist of metrics: Cartan torsion
and Riemann curvature.

Another approach to defects field is to use non-metric geometry: topology (MERMIN,
1979; NAKAHARA, 2003). In the late 1970, it was recognized that the proper mathematical
language to describe and classify topological defects in condensed matter is homotopy,
rather than homology (e.g., MERMIN et al., 1978). Both homotopy and homology have the
useful concept of topological invariant such as the Betti numbers mainly used in algebraic
topology (SINGER and THOPE, 1967).

According to Gauss-Bonnet theorem for an oriented and connected Riemannian 2-
manifold, the integral of the Gaussian curvature is related to the Betti numbers (SINGER and
THOPE, 1967). This implies that the differential geometrical approach to the defects field
is not irrelevant to the topological approach using the Betti numbers. However, an
understanding of the Betti numbers of the defects field is still lacking. The purpose of this
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paper is to investigate the topological aspects of defects field by using Betti numbers.
This paper is structured as follows. In Sec. 2, we concisely review the Betti numbers.

In Sec. 3, we reconsider the geometrical meanings of dislocations based on the first Betti
numbers. In Sec. 4, we reconsider the topological aspects of disclinations. Section 5 is
devoted to conclusions. In this paper, there may be still some conceptual shortcomings in
assumptions or in mathematical treatments. But, the results seem to be meaningful.
Therefore, this author decided to publish this work at this stage while leaving a room for
improvement in future.

2.  The Betti Numbers

In this section, we review the concept of the Betti number. We suppose that m points
pi are given in the n-dimensional Euclidian space. The m-simplex is defined as the group
of points in terms of pi as follows:
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The m-simplex is constituted of the spaces inside the convex envelope of the m points pi,
together with its convex envelope. For instance, points (p0) and segments (p0, pi) correspond
to 0-simplex and 1-simplex, respectively. Let K be a finite set of 0- and 1-simplices. We
call K a simplical complex when K satisfies the following two conditions:

(1) Any endpoint (a point connected to the simplex with a single bond) of a simplex
from K is also in K.

(2) The intersection of any two simplices from K is either empty or is an endpoint for
both of them.
In this paper, we regard the crystal lattice as a one-dimensional complex made of 0- and 1-
simplices, in which atoms and bonds correspond to 0-simplex and 1-simplex, respectively.
A circuit on the crystal lattice is made of atoms and bonds so it is considered to be one-
dimensional complex made of 0- and 1-simplices.

Fig. 1.  (A) Lattices with an edge dislocation. (B) Corresponding perfect lattice and Burgers vector.
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In a simplical complex, we can define Betti numbers that are topological invariants of
a crystal lattice (the complex), i.e., they depend only on the topology of the space, so it is
shared by any topological space homeomorphic to the space (see SINGER and THOPE, 1967
for rigorous definition). The zero Betti number b0 is defined by the number of geometrical
connection of K, that is, b0 is the number of connected components. For instance, in Figs.
1, 2(A) and 2(B), we have b0 = 1 in each crystal lattice. On the other hand, if the four crystal
lattices constitute a set K while separated from each other, we have b0 = 4. The first Betti
number b1 is defined by the number of independent circuits. According to Homology
theory, the alternative sum of the nth Betti number bn gives the Euler characteristic of a
crystal lattice (the complex) χ:

χ = −( ) = − ( )
=
∑ 1 2

0

1

0 1
n

n
n

b b b .

Euler characteristic is also called the Euler number or the Euler-Poincare characteristic.
The Euler characteristic of a lattice is made of 0- and 1-simplices. On the other hand, Euler
formula for a crystal lattice (the complex) gives

Fig. 2.  (A) Lattices with a screw dislocation. (B) Corresponding perfect lattice and Burgers vector. (C) Three-
dimensional expression of the screw dislocation. (D) Corresponding perfect lattice.
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where αn is the number of n-simplex. Since we regard crystal lattice as one-dimensional
complex made of 0- and 1-simplices, so we ignored the higher order terms (n ≥ 2) of Eq.
(3). From Eqs. (2) and (3), the first Betti number is given by

b b1 0 0 1 4= − + ( )α α .

For instance, the first Betti number of lattices in Figs. 1 and 2 are b1
ED = 1 – 14 + 20 = 7,

b1
ED(PL) = 8, b1

SD = 9 and b1
SD(PL) = 10 (the meaning of the abbreviation will be mentioned

in the next section.). This means that the first Betti number is useful for classifying the four
lattices that cannot be distinguished by the zero Betti number (b0 = 1). In the following
sections, we will consider the physical meanings of the first Betti number in the crystal
lattice as a one-dimensional complex.

3.  Dislocations and the First Betti Number

First, to clarify the relationship between dislocations and the first Betti number b1, we
take up the simple case in which the lattices include the edge and the screw dislocations
have unit length (Figs. 1(A) and 2(A), see also Fig. 2(C)). To introduce Burgers vector, we

Fig. 3.  (A) Lattices with a dislocation whose “strength” is one. (B) Corresponding perfect lattices. (C) Lattices
with a dislocation whose “strength” is two. (D) Corresponding perfect lattices.
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image the perfect lattices that does not include the dislocations (Figs. 1(B) and 2(B), see
also Fig. 2(D)). When we make a closed circuit around a dislocation in real lattices (Figs.
1(A) and 2(A)), there is a mismatch of one lattice vector in perfect lattices (the dotted
arrows in Figs. 1(B) and 2(B)). This is called Burgers vector (e.g., HIRTH and LOTHE,
1982). The circuit is called Burgers circuit, which is a trace along the crystal lattice so it
is also one-dimensional complex made of 0- and 1-simplices. In Figs. 2 (C) and (D), we
make a closed circuit around a dislocation on the “surface” of the 3D graph, so we recognize
the circuit as planar graph in essential. Let ∆b1

ED and ∆b1
SD be the change in the first Betti

number, we have ∆b1
ED = 8 – 7 = 1 and ∆b1

SD = 1. This means that the existence of
dislocations can be described by the change in the first Betti number in dependence of the
type of edge and screw dislocations. This assertion is not proved rigorously, but so far as
examined for several lattices including those shown in this paper, this seems valid.

Next, we take up more complicated lattices. In this paper, we define the “strength” of
the dislocation as the number of bonds that lack atom due to the dislocation. For instance,
the “strength” of the dislocations in Figs. 3(A) and (C) are one and two, respectively.
Although dislocations have different “strength” in real lattices (Figs. 3(A) and (C)), the
corresponding Burgers vectors are one in perfect lattice (Figs. 3(B) and (D)). We reconsider
this case based on the first Betti number. To visualize the point in question, we blacken
atoms of the closed circuit around the dislocation in real lattices, and draw atoms and
lattices, needed to complete the perfect lattice, as dotted lines. Figure 3(B) shows an
increase in one atom and two lattices when the “strength” of the dislocation is one. Figure
3(D) shows an increase in two atoms and four lattices when the “strength” of the dislocation
is two. We can generalize theses results as follows. Let ∆b1(n) be the change in the first
Betti number in the case of the “strength” of the dislocation being n. The ∆b1(n)-value can
be estimated by Eq. (3). For instance, ∆b1(n) = 0 – (+1) + (+2) = 1 in Fig. 3(A) and ∆b1(2)
= 2 in Fig. 3(B). Therefore, in the case of n (n atoms and 2n bonds are added), we obtain

∆b n n n n1 0 2 5( ) = − +( ) + +( ) = ( ).

This is a topological expression of dislocations field: the “strength” of the dislocation

Fig. 4.  (A) A positive disclination. (B) A negative disclination. (C) Corresponding perfect lattices.
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corresponds to the change in the first Betti number. The generality of Eq. (5) is not proved
rigorously, but so far as checked for several examples including those shown in this paper,
this assertion seems valid.

4.  Disclinations and the First Betti Number

In this section, we consider a topological aspect of rotational dislocations, i.e.,
disclinations. In Sec. 3, we found that the existence of dislocations can be described by the
change in b1. Let us estimate the corresponding quantity of disclinations. Figures 4 (A) and
(B) show a disclination and its surrounding area. We blacken atoms of the cores of
disclinations. From Eq. (3), we can estimate the core’s b1 as one. On the other hand, Fig.
4(C) shows that b1 of the core of the perfect lattice is also one, therefore, the change in b1
for disclinations is zero. That is, the core of disclinations cannot be described by the change
in b1.

Now, a disclination is often called wide range defects. Then, we estimate b1 of not only
the core but also its surrounding area. Figures 4(A) to (C) show that b1 of the core and its
surround area are b1

PD = 7, b1
ND = 11 and b1

PL = 9. Therefore, the change in b1 of positive
and negative disclinations are ∆b1

PD = 2 and ∆b1
ND = –2, respectively. That is, the absolute

value of b1 are independent of the type of disclinations, and the sign of b1 depend on the
type of disclinations. This result corresponds to Frank vector’s value and direction.

5.  Conclusions

We have shown that dislocations field can be described by the first Betti number b1 in
dependence of the types (edge or screw) based on the algebraic topology. Moreover, we
have suggested the topological expression of dislocations field: the “strength” of the
dislocation corresponds to the change in b1. Disclinations field is also described by b1: the
absolute value of b1 are independent of the type of disclinations, but the sign of b1 depend
on the type.
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