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Equilibria for Anisotropic Surface Energies and the Gielis Formula
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Anisotropic surface energies are used to model surface energies which depend on the direction of the surface
normal. Equilibria of such energies are characterized as surfaces with constant anisotropic mean curvature. The
surface of a crystal and certain interfaces of liquid crystals with an isotropic substrate give physical examples
of such equilibria. We produce examples of surfaces having constant anisotropic mean curvature for anisotropic
energy functionals having a Wulff shape based on the Gielis formula.
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1. Introduction
Thompson (1942) makes the case that since the sphere

is the only surface of perfect symmetry, a cause must be
sought for the departure from sphericity in the form of any
cell. In the absence of external pressures he argues that
molecular forces within the cell wall are responsible for the
asymmetry and anisotropy of their shapes. The interested
reader is directed to the discussion in chapter 5 of Thomp-
son (1942) of how, for example, such an energy determines
the cylindrical cell of spirogyra and the ellipsoidal shapes
of certain yeast cells.

Thompson’s expression for the equilibrium equation is

� := T1/R1 + T2/R2 ≡ constant, (1)

where 1/R1, 1/R2 are the principal curvatures of the con-
sidered smooth surface �, of which we will explain the
definition in the last section, and T1, T2 are orthogonally
directed tensions which depend on the material and the nor-
mal direction of the surface at each point. Roughly speak-
ing, (1) means that a certain kind of weighted curvature of
the surface is constant everywhere on the surface, where
this weight depends on the normal direction of the surface.
We remark that on the sphere the curvature itself is constant
everywhere.

In general, the quantity � := T1/R2 + T2/R2 de-
pends on each point P of a surface �. � is called the
anisotropic mean curvature of �. Equation (1) means that
the anisotropic mean curvature � is constant on the whole
of the surface �, and we will refer to � as being a surface
with constant anisotropic mean curvature (CAMC surface).

In the special case where T1 = T2 = 1, Eq. (1) reduces
to

2H := 1/R1 + 1/R2 ≡ constant. (2)
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The function H appearing in (2) is called the mean curva-
ture of the surface �. A surface on which H is constant is
called a surface with constant mean curvature (CMC sur-
face).

The equation “H ≡ constant” describes equilibria for
interfaces between two isotropic media, e.g. the surface of
a small drop of water surrounded by air (if we ignore the
graviational energy). On the other hand, Eq. (1) describes
equilibria for interfaces between two materials when one of
them is anisotropic and the surface tension depends on the
surface normal.

Over the last twenty years, many new examples of CMC
surfaces have been produced. On the other hand, few
explicit examples of more general surfaces with constant
anisotropic mean curvature can be found in the literature.
We will be concerned here with the generation of particu-
larly accessible models for CAMC surfaces which are equi-
libria for certain anisotropic surface energies. Each energy
functional which we will treat has the property that the ab-
solute minimizer (which is called the Wulff shape of the en-
ergy) among all closed surfaces enclosing a fixed volume
is a convex surface whose horizontal slices are all homo-
thetic (similar) to each other. Also, the examples which
we will produce have the property that each horizontal slice
is homothetic to that of the Wulff shape. We will explain
how one can produce examples of such surfaces which will
demonstrate how the geometry of an equilibrium shape is
effected by the form of the anisotropic energy. Each of the
groups of Figs. 3 through 8 shows CAMC surfaces for the
same anisotropic energy. And the first figure in each group
shows the Wulff shape of the corresponding energy.

The paper is organized as follows: In Sec. 2, we define
the anisotropic surface energy in terms of the corresponding
Wulff shape, and we define CAMC surfaces as critical sur-
faces of anisotropic surface energies. We also mention how
anisotropic energies and CAMC surfaces can be applied to
physical phenomena. In Sec. 3, we introduce the Gielis for-
mula and explain how one can produce examples of CAMC
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Fig. 1.

Fig. 2. The point p ∈ � is assigned the value 0Q.

surfaces having a Wulff shape based on this formula. In
Sec. 4, we will explain the derivation of equations which
are used to produce CAMC surfaces in Sec. 3. Only in this
section, mathematical calculations appear. Finally in Ap-
pendix, we explain the definition of the principal curvatures
of surfaces.

2. Anisotropic Surface Energy and Wulff Shape
A smooth, closed, convex surface W defines a func-

tional on the set of oriented smooth surfaces in the three-
dimentional Euclidean space R3 in the following way.

Recall that the Gauss map of a surface �, assigns a
unit vector N (p) to each point p in � in such a way that
N (p) is perpendicular to the surface at the point p (see
Fig. 2). The Gauss map of a convex surface W is always
a diffeomorphism N : W → S2 from W onto the two-
dimensional sphere S2, that is, N determines a smooth one-
to-one correspondence between points on W and points on
S2. Let F denote the support function of W ; for ω ∈ W ,
F(ω) is the distance from the origin 0 of R3 to the tangent
plane to W at ω. Take the origin inside of the domain
bounded by W . Then F is a positive function on W . In
Fig. 2, F(ω) is the distance 0Q.

Let � be an oriented smooth surface. For any point p in
�, denote by ω(p) the unique point in W where the normal
to W agrees with the normal to � at p. See Fig. 2. The
mapping ω : � → W which maps a point p in � to a point
ω(p) in W is called the anisotropic Gauss map of �. In Fig.
2, the distance 0Q represents the value F(ω(p)) which is
assigned to the point p ∈ �. Now we define the anisotropic

surface energy of � as

F[X ] :=
∫

�

F(ω(p))d�, (3)

where d� is the area element of �. This means that the
quantity F(ω(p)) d� is added up over all points in the
surface to obtain the energy F[X ]. F[X ] is a mathematical
model of an anisotropic surface energy in the following
sense. F(ω(p)) represents a surface free energy per unit
area near p which depends on the normal direction of the
surface. The sum F[X ] of the surface energy F(ω(p)) d�

of small pieces of the surface gives the total energy of �.
The surface W is called the Wulff shape of the functional

F . Wulff’s theorem states that W minimizes the functional
F among all closed surfaces enclosing the same three-
dimensional volume as W . In the case where the surface
energy is the usual surface tension (that is, a constant mul-
tiple of the surface area), this theorem reduces to the well
known property of a sphere; it has the least surface area
among all surfaces enclosing a fixed volume.

Besides the absolute minimizer, surfaces which are crit-
ica for such functionals, with or without a constraint on the
volume, with prescribed fixed or free boundary conditions
may occur as equilibria and are of interest. The critica are
characterized in terms of the anisotropic mean curvature
of the surface. The anisotropic mean curvature � of the
surface � is defined as the trace of the differential of the
anisotropic Gauss map ω : � → W . This means that, at
each point p in �, �(p) is the sum of the stretch rates of
ω for any two orthogonal directions. This � coincides with
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Fig. 3. (a) (m, n1, n2, n3, M, N1, N2, N3) = (3, 3.2, 4, 4, 6, 10, 4, 4), side view (left) and top view (right) of Wulff shape. (b) Side view
(left) and top view (right) of a generalized anisotropic catenoid for the Wulff shape in (a). (c) (m, n1, n2, n3, M, N1, N2, N3, �, c) =
(3, 3.2, 4, 4, 6, 10, 4, 4, 0.5, 1), side view (left) and top view (right) of a generalized anisotropic unduloid for the Wulff shape in (a). (d)
(m, n1, n2, n3, M, N1, N2, N3, �, c) = (3, 3.2, 4, 4, 6, 10, 4, 4, 1, −2), a generalized anisotropic nodoid for the Wulff shape in (a).

the one which was given above in (1). The critica of the
anisotropic surface energy is characterized by the property
that � is constant, when a volume constraint is imposed,
or is zero, when no volume constraint is imposed (for the
proof, see Koiso and Palmer (2005)). We should remark

that in the case where both of the Wulff shape W and the
surface � are surfaces of revolution, 1/T1 and 1/T2 are the
principal curvatures of W . Also, this is true in the case
which we will treat in Secs. 3 and 4.

Anisotropic surface energies are used to model the inter-
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Fig. 4. (a) (m, n1, n2, n3, M, N1, N2, N3) = (6, 10, 4, 4, 3, 3.2, 4, 4), side view (left) and top view (right) of Wulff shape. (b) Side view (left) and top
view (right) of a generalized anisotropic catenoid for the Wulff shape in (a).

(a)

(b)

Fig. 5. (a) (m, n1, n2, n3, M, N1, N2, N3) = (5, 6, 4, 4, 5, 10, 4, 4), side view (left) and top view (right) of Wulff shape. (b) Side view (left) and top
view (right) of a generalized anisotropic catenoid for the Wulff shape in (a).
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Fig. 6. left: (m, n1, n2, n3, M, N1, N2, N3) = (4, 40, 40, 40, 4, 40, 40, 40), Wulff shape. right: a generalized anisotropic catenoid.

(a)

(b)

(c)

Fig. 7. (a) left: (m, n1, n2, n3, M, N1, N2, N3) = (3, 10/9, 10/9, 10/9, 3, 10/9, 10/9, 10/9), Wulff shape. right: a generalized anisotropic catenoid.
(b) (m, n1, n2, n3, M, N1, N2, N3, �, c) = (3, 10/9, 10/9, 10/9, 3, 10/9, 10/9, 10/9, 0.5, 1), side view (left) and top view (right) of a generalized
anisotropic unduloid for the Wulff shape in (a). (c) (m, n1, n2, n3, M, N1, N2, N3, �, c) = (3, 10/9, 10/9, 10/9, 3, 10/9, 10/9, 10/9, 1, −0.5), a
generalized anisotropic nodoid for the Wulff shape in (a).
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face between two materials when one of them has an or-
dered, internal structure. If we consider a material in which
the constituent molecules are, for examples, aligned in a
certain direction, then at the surface interface between this
material and its surrounding environment, the surface ten-
sion will depend on the relation between the surface normal
and this direction. The surface of a crystal and certain in-
terfaces of liquid crystals with an isotropic substrate give
physical examples of such equilibria.

3. Gielis Formula and Generation of CAMC Sur-
faces

We take three orthogonal axes in the space R3 which we
will call x, y, z-axis as usual. Each point in R3 is repre-
sented as, for example, (a, b, c) by using its coordinates.
We may assume that x, y-axis are horizontal and z-axis is
vertical.

The Gielis formula, Gielis (2003),

r(θ) =
{∣∣∣∣(1/a) cos

(
mθ

4

)∣∣∣∣
n2

+
∣∣∣∣(1/b) sin

(
mθ

4

)∣∣∣∣
n3

}−n1

(4)

can be used to generate a large number of interesting closed
planer curves (ξ(θ), η(θ)) = (r(θ) sin θ, r(θ) cos θ) with
symmetries. We will only use the case a = 1 = b here so
we will omit these parameters. When such a curve is
represented parametrically, we will denote it by
G(θ, m, n1, n2, n3). Two such curves G(σ, m, n1, n2, n3)

= (u(σ ), v(σ )), G(t, M, N1, N2, N3) = (α(t), β(t)) can
be used in the formula

χ(σ, t) = (u(σ )α(t), u(σ )β(t), v(σ )), u(σ ) ≥ 0, (5)

to produce a closed surface. We remark that each curve is
symmetric with respect to the second axis. When each of
the curves is convex, the surface χ will be a closed convex
surface without self-intersection (see Figs. 3a, 4a, 5a, 6-
left, and 7a-left). We remark that all the curves obtained
by intersecting χ with horizontal planes are homothetic
(similar) to the curve (α(t), β(t)) (see Figs. 3a, 4a, and 5a).
In the special case where the curve (α(t), β(t)) is a circle
with radius 1, the surface χ is rotationally symmetric and
the curve (u(σ ), v(σ )) is its profile curve, that is, we obtain
the surface χ by rotating the curve (u(σ ), 0, v(σ )) along
the third axis. In the general case, the curve (u(σ ), 0, v(σ ))

is also the profile curve in the following sense: Consider
the vertical half plane containing the point (α(t), β(t), 0)

with the vertical axis as its boundary. The curve obtained
by intersecting χ with this half plane is a curve which is
obtained from the curve (u(σ ), 0, v(σ )) by stretching along
the u direction. The stretch rate is

√
(α(t))2 + (β(t))2.

We will regard the closed surface χ as the Wulff shape
W of the functional (3). A recently developed construction,
Koiso and Palmer (2008), will be applied with this func-
tional to give examples of surfaces with constant anisotropic
mean curvature.

The generalized anisotropic catenoid is a surface with
anisotropic mean curvature � ≡ 0. It can be parameterized

as follows. Its profile curve (x(σ ), z(σ )) is given by

x = c

2u
, z = −c

2

∫ σ dv(σ )

u2
,

where c 
= 0 is an arbitrary nonzero constant. The general-
ized anisotropic catenoid can then be parameterized as

X (σ, t) = (x(σ )α(t), x(σ )β(t), z(σ )). (6)

The generalized anisotropic catenoid has the property that
sufficiently small pieces of it minimize the anisotropic en-
ergy (3) defined by W among all surfaces having the same
boundary. Below, we will display some Wulff shapes gen-
erated in this way together with the corresponding general-
ized anisotropic catenoids with c = 2 (Figs. 3a, 3b, 4a, 4b,
5a, 5b, 6, 7a, and 8a).

The generalized anisotropic unduloid is a surface with
constant anisotropic mean curvature � ≡ constant 
= 0. It
can be obtained by using (6) for constants c > 0, � > 0
with

x := u ± √
u2 − �c

�
, (7)

z := 1

�

∫ σ
(

1 ± u(σ )√
u2(σ ) − �c

)
dv(σ ). (8)

The branches for the two signs glue together smoothly if
σ is varied over the interval for which u2(σ ) − �c ≥ 0
holds. The surface can be extended periodically in the
sense that the extended surface is invariant under a vertical
translation, and we have a complete surface without self-
intersection. Figures 3c, 7b, and 8b-left will show a part
of generalized anisotropic unduloids. Equations (7) and (8)
with the plus sign produce the positively curved parts of the
surface, while (7) and (8) with the minus sign produce the
negatively curved parts.

The generalized anisotropic nodoids can be obtained
from (7) and (8) with only the + sign being used and with
constants � > 0 and c < 0. They are complete periodic
surfaces with self-intersections (Figs. 3d, 7c, and 8b-right).
u > 0 gives the positively curved parts of the surface, while
u < 0 gives the negatively curved parts.

Sufficiently small parts of generalized anisotropic undu-
loids and nodoids minimize the anisotropic energy defined
by W among all surfaces having the same boundary and
enclosing the same three-dimensional volume.

The surfaces discussed in this section are called gen-
eralized anisotropic Delaunay surfaces. They are a gen-
eralization of anisotropic Delaunay surfaces. Anisotropic
Delaunay surfaces are surfaces of revolution with constant
anisotropic mean curvature, and they were extensively stud-
ied in Koiso and Palmer (2005).

4. Derivation of Equations of Generalized
Anisotropic Delaunay Surfaces

In this section we derive the formulas which we men-
tioned in the last section.

Assume that the Wulff shape W is given by

χ(σ, t) = (u(σ )α(t), u(σ )β(t), v(σ )), u(σ ) ≥ 0, (9)
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(a)

(b)

Fig. 8. (a) left: (m, n1, n2, n3, M, N1, N2, N3) = (3, 3.2, 4, 4, 3, 10/9, 10/9, 10/9), Wulff shape. right: a generalized anisotropic catenoid. (b) left:
(m, n1, n2, n3, M, N1, N2, N3, �, c) = (3, 3.2, 4, 4, 3, 10/9, 10/9, 10/9, 0.7, 1), a generalized anisotropic unduloid for the Wulff shape in (a). right:
(m, n1, n2, n3, M, N1, N2, N3, �, c) = (3, 3.2, 4, 4, 3, 10/9, 10/9, 10/9, 1, −2), a generalized anisotropic nodoid for the Wulff shape in (a).

where (α(t), β(t)) is a convex curve, and �W :
(u(σ ), v(σ )) is a convex curve which is symmetric with re-
spect to the v-axis. We assume here that σ is arc length
parameter of (u(σ ), v(σ )). We remark that all the curves
obtained by intersecting W with horizontal planes are ho-
mothetic (similar) to the curve (α(t), β(t)), so they are ho-
mothetic to each other.

Let � be a smooth surface such that all the curves ob-
tained by intersecting � with horizontal planes are homo-
thetic to the curve (α(t), β(t)). Then � is given by

X (s, t) = (x(s)α(t), x(s)β(t), z(s)), x(s) ≥ 0, (10)

using a smooth curve �� : (x(s), z(s)) with arc length s.
The anisotropic Gauss map ω : � → W can be regarded

as a mapping which maps a point (xα(t), xβ(t), z) in � to
a point (uα(t), uβ(t), v) in W . This means that u can be
regarded locally as a function of x through ω.

Recall that, at each point p in �, �(p) is the sum of the
stretch rates of the anisotropic Gauss map ω : � → W
for any two orthogonal directions. In the present case, we
can take the vertical direction and the horizontal direction
as these two directions. Recall that σ , s are arc lengths of
the profile curves �W , �� , respectively. Because of this, the
stretch rate of ω for the vertical direction is dσ/ds, which
is the rate of σ with respect to s. On the other hand, it is
clear that the stretch rate of ω for the horizontal direction
is u/x . Therefore, � is a surface with constant anisotropic

mean curvature if and only if

� = dσ/ds + u/x ≡ constant (11)

on the whole surface. Because of the definition of ω, the
tangent to �� at a point (x(s), z(s)) coincides with the
tangent to �W at the corresponding point (u(σ ), v(σ )). This
means that dx(s)/ds = du(σ )/dσ , dz(s)/ds = dv(σ )/dσ

holds. Therefore,

du/dx = dσ/ds = dv/dz (12)

holds. Hence, Eq. (11) can be written as

du/dx + u/x = � ≡ constant, (13)

which is equivalent to

x(du/dx) + u = �x . (14)

Integrating (14) with respect to x , we obtain

ux = �(x2/2) + c/2, (15)

where c is any constant. In the case where � 
= 0, we obtain

x = (1/�)
(

u ±
√

u2 − �c
)

, (16)

while if � = 0, we obtain

x = c/(2u). (17)



8 M. Koiso and B. Palmer

In both cases, z is given by the integral of dx/du with
respect to v as follows.

z =
∫

(dx/du)dv. (18)

For dz = (dz/dv)dv = (ds/dσ)dv = (dx/du)dv, using
(12).

The surface (10) with (17) and (18) is called a gener-
alized anisotropic catenoid (Figs. 3b, 4b, 5b, 6-right, 7a-
right, and 8a-right). The surfaces (10) with (16) and (18)
are divided into two classes: One class includes only pe-
riodic surfaces without self-intersection, and each surface
is called a generalized anisotropic unduloid (Figs. 3c, 7b,
and 8b-left). The other class includes only periodic surfaces
with self-intersection, and each surface is called a general-
ized anisotropic nodoid (Figs. 3d, 7c, and 8b-right). Here
periodic means that the surface is invariant under a certain
vertical translation.

Appendix A. Definition of Principal Curvatures
The values R1, R2 in (1) are defined at each point P on

the surface � in the following way. Let N be a unit normal

vector to � at P and let � be a plane which includes N (see
Fig. 1). Then, the intersection γ of � with the surface �

is a smooth curve. We denote by C the circle which is in
second order contact to γ at P . Intuitively C is the circle
which best approximates γ at the point P . It is called the
curvature circle of γ at P , and its radius R(�) is called the
radius of curvature of γ at P . Now, we take all planes �

which include N and we consider R(�). The maximum
R1 := R(�1) and minimum R2 := R(�2) of R(�) are
called radii of curvature of the surface � at P , and 1/R1

and 1/R2 are called principal curvatures of � at P . It is
known that �1 and �2 are orthogonal to each other.
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