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Protrusion Fourier Descriptor: Skeleton-based Representation of Open Curves
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If only some part of an object outline is of the matter of interest in statistical shape analysis, an appropriate
open-curve descriptor is needed and tangent Fourier descriptor (TFD, also called P-type Fourier descriptor)
is one such example. However, the TFD amplifies high frequency noise. In this paper we propose protrusion
Fourier descriptor (PFD), an open-curve descriptor utilizing the skeletal information for an open curve, which is
invariant under translation and rotation. Using regularized logistic regression model and generalized information
criterion, we compare the PFD to the TFD in terms of capability to capture subtle variability of irregular shapes.
The experiments with open curves extracted from nine inbred strains of mouse mandibular outlines have shown
that different strains of data separate more clearly using the PFD than when using the TFD, and the PFD reflects
inter-strain variability better.
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1. Introduction
The numerical description of shapes is an important

task in the fields of statistical analysis of shapes and also
shape recognition. During recent decades, a number of ap-
proaches have been presented to characterize shapes which
are mostly represented as closed curves or regions. How-
ever, sometimes we need to describe open curves not closed
curves. Here we think of the case that we need to analyze
open curves, that is, the case that we are interested in only
some part of an object outline. When we analyze shapes
of plant organs, if the shapes contain artificial cutoff lines
and worm-eaten defects, we need to analyze homologous
contour segments in such a way that the influences of such
artifacts and defects are taken off. For statistical analysis
using methods of multivariate analysis, we need to numer-
ically characterize open curves, and in this paper, we focus
on numerical description of open curves.

Because there is no interior and exterior for open curves,
we can not use region-based shape descriptions. Landmark-
based descriptions have been commonly used in biological
morphometrics for statistical analysis, however these meth-
ods have some problems which stem from ignoring infor-
mation from the parts that are not selected as landmarks.
When the sample shapes are very complicated and irreg-
ular and we can not easily see where the underlying es-
sential feature is, we may lose useful information using
the landmark-based method. Moreover, the method cannot
be utilized when we can not set reliable homologous land-
marks which are commonly found in all samples.

∗The experiments in this research are approved by the Animal Experi-
ment Committee of the National Institute of Genetics (NIG), and the care
of the animals used in the experiments comply with the guidelines of the
NIG.

However, most contour-based methods capture whole
contour information of irregular shapes such as those or-
dinarily seen in the forms of living organisms, and contour-
based Fourier descriptor has been commonly used in bio-
logical morphometrics. In most Fourier descriptor methods,
given a curve, after representing some geometric informa-
tion associated with each point on the curve as a numerical
value, the shape descriptor is defined as the Fourier trans-
form of the sequence of the values ordered from the starting
point to the ending point. The Fourier descriptor represents
the information of the whole shape in frequency space.

In statistical analysis of closed curves, complex Fourier
descriptor (Granlund, 1972) and elliptic Fourier descriptor
(Kuhl and Giardina, 1982) are commonly used to describe
contour shapes. Since Rohlf and Archie (1984) showed
that, combining these descriptors with principal component
analysis, one can evaluate the feature of a shape as principal
component scores, these descriptors have been used in sta-
tistical shape analysis. To apply these closed-curve descrip-
tors to open curves, there are several examples of making a
closed curve from an open curve, connecting the endpoints
of the original open curve with those of its half-turned curve
(Kawamura and Yokota, 2005), or with those of the curve
symmetric with respect to the line that goes through the two
endpoints of the original open curve (Lestrel et al., 2004).
These techniques do not always work well. In the case that
the shape of neighborhood of connecting points greatly af-
fects the description of a curve, the descriptor may fail to
capture the subtle feature of the shape.

An example of Fourier descriptor which can be used to
characterize open curve as it is, is tangent Fourier descrip-
tor (TFD, aka P-type Fourier descriptor) (Uesaka, 1984).
The TFD has been applied to author attribution of ukiyoe
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works (Yamada and Hayakawa, 1997), recognition of hu-
man face profiles (Aibara et al., 1991) and statistical shape
analysis of lotus petal tip (Zheng and Tamura, 2005) and
rice leaf (Zheng et al., 2008), which showed that the de-
scriptor can be used to accomplish those tasks. However,
the TFD is defined as a Fourier transform of a sequence of
differences between adjacent points, which means that high
frequency variability and also noise are amplified, so fine
and subtle features represented by relatively high frequency
components may be lost in the noise. So the TFD method
may lose useful information when the subtle and fine struc-
ture of a shape has an essential meaning.

The rest of this paper is organized as follows. Sec. 2
describes the TFD method. In Sec. 3, we propose a
new Fourier-based open-curve descriptor, called protrusion
Fourier descriptor (PFD), which utilizes an approximation
of skeletal information at infinite resolution. Sec. 4 is the
experimental part of this paper. In the experiments, with
open curves extracted from mouse mandibular outlines of
nine inbred strains, we compare the PFD to the TFD with
respect to the ability to represent subtle feature of irregular
shapes. Finally Sec. 5 concludes this study.

2. Tangent Fourier Descriptor
In this section we describe how to calculate the TFD.

Suppose a given open curve is represented as the ordered
sequence of pixel coordinates which are tracing the curve
in an image. First of all, resampling from the sequence,
we have to represent the curve as the set of N + 1 equally-
spaced points which are ordered from the starting point to
the ending point, i.e.{

(x0, y0), . . . , (xN , yN )|
√

(xn+1 − xn)2 + (yn+1 − yn)2

= δ ∀n ∈ {0, . . . , N − 1}
}
,

where δ is some constant. Then we define complex func-
tions wn as

wn = xn+1 − xn

δ
+ √−1

yn+1 − yn

δ
∀n ∈ {0, . . . , N − 1}.

Lastly, we apply discrete Fourier transform to the sequence
of {w0, . . . , wN−1}

ck = 1

N

N−1∑
n=0

wn exp

(
−√−1

2πkn

N

)
∀k ∈ {0, . . . , N − 1}.

The set of these complex numbers {c0, . . . , cN−1} is the
TFD and the set of 2N real numbers {�(c0), (c0),

. . . , �(cN−1), (cN−1)} is used as the feature vector of
each shape in statistical analysis.

3. Protrusion Fourier Descriptor
We propose a new Fourier-based open-curve descriptor,

protrusion Fourier descriptor (PFD). The detailed algo-
rithm for computing the PFD and the method of inverse
transform from the PFD to the corresponding curve shape
is described in the appendix. Here in this section we only

illustrate the geometric meaning and the general computing
procedure of the PFD. Generally speaking, in the Fourier
descriptor methods—which have an advantage of reflecting
whole information of a shape—given a curve, first we com-
pute numerical values so that each value represents some
kind of geometric information associated with each point on
the curve, and then define the shape descriptor as the Fourier
transform of the sequence of the numerical values ordered
from the starting point to the ending point. In our method,
we use a degree of protrusion or sticking out at each point
on the given open curve as the geometric information as-
sociated with each point on the curve. In other words, we
compute numerical values in such a way that each value rep-
resent the degree of rightward or leftward protrusion (with
respect to the direction from the starting point to the end-
ing point) at each point on the curve. We then define the
PFD as the Fourier transform of the ordered sequence of
the numbers.

Now, we illustrate how to calculate the degree of leftward
and rightward protrusions. See Fig. 1 for more detailed il-
lustration. Figure 1(a) shows an open curve (the left end-
point is the starting point), The collections of maximal disks
and skeletons for the open curve are seen in Figs. 1(b) and
(c) respectively, and Fig. 1(d) shows the collection consists
of the skeletons and the perpendiculars drawn from points
on the skeletons to all points on the original open curve. We
choose to call such graphs skeleton-perpendicular graphs.

Now, we should make clear the definition of maximal
disks in the case of open curves. In the case of closed curves
or regions, intuitive definition of maximal disks (MDs) is
as follows: Any circle which is entirely within the object
boundary and touches the boundary from the inside at more
than one point. However, in the case of open curves, there
is no interior or exterior for the curve, and in order to define
the new open-curve descriptor, we should be able to distin-
guish whether a circle touches the curve from the left or the
right (with respect to the direction from the starting point to
the ending point). Here, we slightly modify the definition
of MD to be applicable to the case of open curves as fol-
lows: a left/right MD associated with a point on the curve
is the maximal tangent circle that touches the curve at the
point from the left/right but never intersects with the curve.
That is, there is a pair of left and right MDs associated with
each point on the curve. In Fig. 1(b), the left MDs are blue-
colored, and the right MDs are red. The word skeleton usu-
ally refers to a curve so that an arbitrary point on the curve
is the center of a MD for the original open curve, that is, the
skeleton consists of the centers of the MDs for the original
open curve (Blum, 1973). Here in the case of open curves,
we call the skeleton made of the centers of left MDs left
skeleton, the other one is called right skeleton. In Fig. 1(c),
the left skeletons are colored blue, and the right ones red.

Now, in order to define the PFD we use the skeleton-
perpendicular graphs (Fig. 1(d)). The perpendicular drawn
from a point on a skeleton to a point on the original open
curve can be approximately represented by the line seg-
ment between the point on the original curve and its as-
sociated MD’s center. So we can easily compute the
skeleton-perpendicular graphs, and we call the skeleton-
perpendicular graphs just skeletons from now on.
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(a) (b)

(c) (d)

Fig. 1. Skeletonization of an open curve. (a) An open curve, (b) maximal disks, (c) skeletons, and (d) the skeleton-parpendicular graphs.

All left or right skeletons are not necessarily singly con-
nected and each left or right skeleton has only one branch
that goes to infinity. The branch is cut off at the point which
is the center of a MD with a sufficiently large radius ρ, and
the remaining skeleton becomes a tree graph of which the
root is the center of a MD with a radius ρ and all its leafs
are on the original open curve. For each point on the orig-
inal open curve, we first compute the distance between the
left root and the point on the curve through the left skele-
ton, and next, subtract ρ from the distance, then we call
the obtained value left protrusion, which means rightward
protrusion from the left at the point on the curve. Right pro-
trusion is similarly defined. All protrusions converges to
certain values respectively at the limit of ρ → ∞, and can
be assumed to be independent of ρ for sufficiently large ρ.
Then a left/right protrusion is supposed to be 0 at a point on
the original curve directly touched by a left/right MD with
a radius ρ.

Suppose that given open curve is represented as the set
of N equally-spaced points which are ordered from the
starting point to the ending point in advance of computing
the PFD, and the total length of the curve is normalized to 1.
Figure 2(a) shows the sequences of left and right protrusions
at points on the same open curve shown in Fig. 1(a) (the
curve is represented as the ordered sequence of 200 equally-
spaced points in advance, whereas it was represented as
201-point sequence in the case of TFD). Compared with
the sequences of differences between adjacent points on the
same open curve used in the TFD method (Fig. 2(b)), the

sequences of protrusions at points on the curve which are to
used in the PFD appear much smoother. Finally we define
the PFD as the Fourier transform of the sequence of the
complex numbers which real and imaginary components
are left and right protrusions respectively.

4. Experiment
We implemented the experiment in order to compare the

PFD to the TFD with respect to the abilities to represent
subtle variability of irregular open curves. The data used
in this experiment are open curves extracted from nine in-
bred strains of mouse mandible outlines. In the cases that
the curve shapes are represented by TFD and PFD, we did
the strain classification experiments using the same classi-
fication model. Comparing the classification accuracies in
the two cases, we can see which descriptor represents inter-
strain variability better. The logistic regression model re-
turns the estimate of probability that a datum belongs to
each class, the generalization ability (classification ability
on unseen data) of the model can be easily evaluated by
using the generalized information criterion (GIC) (Konishi
and Kitagawa, 1996). That is, we do not have to do cross-
validation. So we used the logistic regression model and
the GIC. In this section, we illustrate the general procedure
of the experiment and the detailed mathematical descrip-
tions of logistic regression model and the GIC are in the ap-
pendix. We devised the PFD for the use in statistical analy-
sis of irregular shapes such as usually seen in forms of living
organisms, and also envisage its use in biological morpho-
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Fig. 2. Sequences to be transformed in the PFD and TFD methods (above: protrusions used in PFD, below: differences between adjacent points used
in TFD).

Fig. 3. Nine inbred strains of mouse mandibles (right halves).

Fig. 4. Extraction of open curves from the binary image of a mouse mandibular shape (left). Tracing the boundary from 1 to 2 clockwise yields upside
curve (center), and tracing the boundary from 3 to 4 counterclockwise yields downside curve (right).

metrics. We hope that the PFD do good for elucidation of
morphological evolution of living things combined with ge-
netic information which has become largely analyzed these
days.
4.1 Materials and methods

It is well known that different strains of mouse mandibu-
lar shapes considerably differ (Festing, 1972), so we used
mouse mandibles in this experiment (Fig. 3). Left and right
halves of the mouse mandible are separated at the mandibu-
lar symphysis, and we used only right one. We placed the
flat and white mouse mandibles on a dark-colored floor and
photographed them from above. Then, enhancing the con-
trast of the images, we converted them to binary images
(Fig. 4). The curve data used in this comparison are two

kinds of open curves, upside and downside curves (Fig. 4),
each of which are extracted from nine inbred strains of
mouse mandibular outlines (Fig. 5). Each open curve was
represented as the set of equally-spaced points, where N =
201 in the case of TFD, N = 200 in the case of PFD. Then
we converted all open curves to 200-length feature vectors
using the TFD and the PFD.

When we make strain classification, if the descriptor suc-
cessfully reflects the subtle diversity of shapes among dif-
ferent strains, the classifier is expected to clearly separate
different strains of feature vectors. In order to see which
descriptor among the TFD and the PFD represents inter-
strain variation of shapes more clearly, we implemented
the following procedure: (1) given open curves (upside
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Fig. 5. 93 open curves extracted from mouse mandibular outlines of nine inbred strains with each strain consisting of 10–13 shapes. Curves of same
strain are superposed (above: upside curves, below: downside curves).
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Fig. 6. GIC of the logistic regression model vs. the number of dimensions of the model, with the data represented by TFDs (blue graph) and PFDs (red
graph). Triangles indicate the smallest peak values.

and downside curves) extracted from nine inbred strains of
mouse mandibular shapes, represent all open curves as 200-
dimensional feature vectors using the TFD and the PFD, (2)
using principal component analysis, divide the whole varia-
tion in data into independent components, (3) fit the multi-
nomial logistic regression model of arbitrary dimension K
to the data using the first K princilal component scores
(assuming that the essential difference among distinct in-
bred strains is contained in the first K principal component
scores), (4) information-theoretically evaluate the goodness
of the model using the GIC, and compare the GIC values
in the cases of the TFD and the PFD. Using the descriptor
which captures the inter-strain variability of shapes more
clearly, the GIC value is supposed to be smaller compared
with the one obtained with the other descriptor.
4.2 Experimental results

In the multidimensional shape space, we do not know
which direction the essential difference among distinct in-

bred strains is represented most clearly. So, assuming that
the essential feature is contained in the first K principal
component scores, we fitted the model of arbitrary dimen-
sion K to the K dimensional data, and calculated GIC value
of the model. And the dimension where the GIC value
has the smallest peak value is the optimal dimension of the
model. The graphs of GIC value vs. K (the dimension of
the model) are shown in Fig. 6. Left and right figures show
the results in the cases of upside and downside curves re-
spectively. Red and blue graphs represent GIC values of
the models with the data represented by PFDs and TFDs
respectively. In either result for upside or downside curve,
and for each number of dimensions of the data, GIC values
of the models are smaller using PFDs than when using the
TFDs, and the difference between the smallest peak values
of GIC with the data represented by PFDs and TFDs ap-
pears more clearly in the case of upside curves than it is in
the case of downside curves.
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5. Conclusions and Discussion
We proposed the protrusion Fourier descriptor (PFD)

method, the Fourier-based open-curve representation which
utilizes the skeletal information for an open curve. And we
compared the PFD to the tangent Fourier descriptor (TFD)
with respect to the ability to represent the subtle variability
of irregular shapes. Using the PFD and the TFD, We nu-
merically represented the open curves extracted from dif-
ferent strains of mouse mandibular shapes, and fitted the
strain classification model, the multinomial logistic regres-
sion model, with the data. Then we compared the good-
nesses of the models in terms of the generalized informa-
tion criterion (GIC) between the cases in which the data are
represented by the PFD and the TFD. As a result, different
strains of data were stably classified in higher belief using
the PFD than when using the TFD, in other words, inter-
strain variability is captured better using the PFD than when
using the TFD. The difference between performances of the
two Fourier descriptors is more pronounced in the case of
upside curves than it is in the case of downside curves.
Compared with downside curves, upside curves contain
more corner-like shapes where the direction changes drasti-
cally, and such shapes seem to be characterized by relatively
high frequency components. In such case, the TFD method
tends to fail to represent subtle variability of shapes because
of the tendency to amplify high frequency noise, whereas
the PFD method is the Fourier transform of the smooth se-
quence of lengths and is robust against noise, so success-
fully represents the fine structures. However, the TFD has
the advantage of easy reconstruction of the original shapes
from the descriptor, so both methods are needed for statisti-
cal analysis of shapes. If genotype information from many
markers on chromosomes for respective individuals is avail-
able, by setting the genotype as the class labels for every
marker genotype, we can probably use the procedure imple-
mented in this paper to detect locations of genes that have
a large influence on morphology. We believe that the PFD
is a useful method in biological morphometrics for elucida-
tion of the processes of morphological evolution combined
with genotype information.

Acknowledgments. The authors would like to thank the anony-
mous referee for helpful comments and suggestions.

Appendix A. Algorithm for computing protrusion
Fourier descriptor

In this Appendix we present the algorithm of representing
an open curve as the fixed-length feature vector. Given an
open curve, suppose that which of the two endpoints is the
starting point is determined, and the given open curve is
represented as a set of N equally-spaced points which are
ordered from the starting point to the ending point, that is

{p1, . . . , pN |‖pi+1 − pi‖ = δ ∀i ∈ {1, . . . , N − 1}},

where δ is some constant. For each point on the curve, there
is a pair of left and right skeletons connected to the point.
Each skeleton has a root and we call the left/right skele-
ton’s root left/right root. The left/right root associated with
a point on the curve is the center of a left/right maximal

disk (MD) with a sufficiently large radius ρ. We first com-
pute the distance between the point on the curve and its as-
sociated left/right root through the left/right skeleton, next
subtract ρ form the distance, then we obtain the left/right
protrusion associated with the point on the curve. Algo-
rithm to obtain left and right protrusion at each point on the
curve is divided into three main parts.

1. For all point on the original open curve, compute their
associated left/right MDs.

2. Construct left/right skeletons and, for all MDs, mea-
sure the distance between the center of each MD and
its root through its skeleton.

3. For each point on the curve, connect the information
about its associated left and right MDs to the point on
the curve.

First of all, in order to store information of the left and right
MDs for every point on the curve, we make a list 
 =
{ωa

i |a ∈ {1, −1}, i ∈ {1, . . . , N }}, where each entry of the
list is 9-tuple ωα

i = {α
i , �α

i , Qα
i , I α

i , J α
i , K α

i , cα
i , rα

i , aα
i }.

The i is the index on the curve ordered from the starting
point to the ending point, and whether α = 1 or −1 means
left or right with respect to the direction from the starting
point to the ending point. And the datatypes and the mean-
ings of those nine variables are as follows:

α
i (logical value)“true” if pi touches a MD,

else“false”.
�α

i (logical value)“true” if the MD is di-
rectly connected to its root, else“false”.

Qα
i (integer) Proper number of the MD.

I α
i

J α
i

K α
i

(integer) Indexes of 3 points on the curve
that the MD touches.

cα
i (2D vector) xy coodinates of the center

of the MD.
rα

i (real number) Radius of the MD.
aα

i (real number) Protrusion associated with
pi .

Now, we compute the information of the left/right MDs
associated with every point on the curve. In the next proce-
dure, for arbitrary triple of points on the curve {pi , p j , pk},
we check whether the circumcircle of �pi p j pk is a tangent
circle or not (whether the circle intersects the curve or not)
and if so, whether it is a left tangent circle or a right one.
And next, if the circle is a tangent circle, we compare the
radius of the circle to the stored radii rα

i , rα
j ,

α
k which are as-

sociated with pi , p j , pk respectively. If the present radius
is larger than the stored radius, the present value is stored
in there. When the computation is done for arbitrary triple
of points on the curve, information of MD (radius, center
coordinates, etc.) associated with every point on the curve
is stored.

Procedure1: Computing information of MD associated
with each point on the curve.

01 for α = 1, −1 do
02 for i = 1 to N do
03 ωα

i :={“false”,“false”,0, 0, 0, 0, 0, 0, 0};
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04 end
05 m := 1
06 for i := 1 to N − 2 do
07 for j := i + 1 to N − 1 do
08 for k := j + 1 to N do
09 if � pk p j pi > π [rad] then α := 1;
10 if � pk p j pi < π [rad] then α := −1;
11 if � pk p j pi = π [rad] then go to the next k;
12 Set c′ the center of the circumcircle of
13 �pi p j pk , and set r ′ the radius of the circle;
14 for l := 1 to N do
15 if ‖pl − c′‖ < r ′ then go to the next k;
16 end
17 if r ′ > rα

i then
18 ωα

i :={“true”,“false”,m, i, j, k, c′, r ′, 0};
19 end
20 if r ′ > rα

j then
21 ωα

j :={“true”,“false”,m, i, j, k, c′, r ′, 0};
22 end
23 if r ′ > rα

k then
24 ωα

k :={“true”,“false”,m, i, j, k, c′, r ′, 0};
25 end
26 m := m + 1;
27 end
28 end
29 end
30 end

Then, only for MDs that directly connected to their roots,
calculate the distances between the centers of the MDs and
their roots. In the next procedure, first we set ρ sufficiently
large value, and next, for each point on the curve, if any
MD is associated with the point, we check whether a circle
with a radius ρ can touch the point on the curve without
intersecting the curve. If a circle with a radius ρ can touch,
we store the linear distance between the center of the circle
with a radius ρ and the center of the MD associated with
the point on the curve.

Procedure2: Computing the distance from the root only
for the points directly connected to their roots.

01 ρ := max{100
∑N

i=2 ‖pi+1 − pi‖,
02 max{rα

i |α ∈ {1, −1}, i ∈ {1, . . . , N }}};
03 for α = 1, −1 do
04 for l := 1 to N do
05 if α

l = “false” then go to the next l;
06 i := I α

l ;
07 k := K α

l ;
08 v := pk − pi ;
09 w := (pi + pk)/2+
10 α

√
ρ2 − ‖v‖2/4

(
0 −1
1 0

)
v/‖v‖;

11 /* w is the coordinate of the root. */
12 for j := 1 to N do
13 if ‖p j − w‖ < ρ then go to the next l;
14 end
15 �α

l :=“true”;
16 aα

l := ‖cα
l − w‖;

17 end
18 end

Next, we construct the skeletons and measure depths of the

center of each MD. Here, depth of a point on a tree means
the distance between the point and the root through the tree.
Next, to construct left and right skeletons, the other list

̃ = {ω̃α

i |α ∈ {1, −1}i ∈ {1, . . . , 3N }} is made from 
.
Each entry of 
̃ is, similar to that of the first list 
, 9-tuple
ω̃α

i = {̃α
i , �̃α

i , Q̃α
i , Ĩ α

i , J̃ α
i , K̃ α

i , c̃α
i , r̃α

i , ãα
i }, so that these

nine variables have the same datatype as the corresponding
variables of the first list 
. The second list 
̃ reflects the
network structure of the skeletons.

Procedure3: Constructing the skeleton graphs from the
information of MDs.

01 for α = 1, −1 do
02 i := 1;
03 for j = 1 to N do
04 
̃α

i := 
α
j ; 
̃α

i+1 := 
α
j ; 
̃α

i+2 := 
α
j ;

05 Ĩ α
i+1 := J α

j ; J̃ α
i+1 := K α

j ;

06 Ĩ α
i+2 := K α

j ; J̃ α
i+2 := I α

j + N ;
07 i := i + 3;
08 end
09 sort the array {ω̃α

i |i ∈ {1, . . . , 3N }} on
10 the 4th variable Ĩ α

i in an ascending order,
11 for the ones which share the same value of
12 Ĩ α

i , sorting is done using the 5th variable J̃ α
i

13 in descending order;
14 end

Next, for each point on the skeletons, we measure the short-
est distance from the root through the skeleton, that is, the
length of the shortest path that never goes through same
node multiple times.

Procedure4: Measuring the distance from the root for
each point on the skeleton.

01 for α := 1, −1 do
02 j := 1;
03 for i := 1 to 3N do
04 if �̃α

i =“true” then
05 j := i ;
06 go to the next i ;
07 end
08 if i ≥ j + 2 then
09 for k := j + 1 to i − 1 do
10 if Q̃α

k = Q̃α
i then

11 ãα
i := ãα

k ;
12 go to the next i ;
13 end
14 end
15 end
16 ãα

i := ãα
i−1 + ‖c̃α

i − c̃α
i−1‖;

17 end
18 end

Next, for each point on the original open curve, we associate
the distance from its left/right root through the left/right
skeleton with the point on the curve.

Procedure5: Associating the left/right protrusion with
each point on the curve.

01 for α := 1, −1 do
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02 for i := 1 to N do
03 if �̃α

i =“false” then go to the next i ;
04 for j := 1 to 3N do
05 if Q̃α

j = Qα
i then

06 aα
i := ãα

j + r̃α
j − ρ;

07 go to the next i ;
08 end
09 end
10 end
11 end

We define a complex function wi using left and right pro-
trusions a(1)

n , a(−1)
n so that

wn = a(1)
n + √−1a(−1)

n ∀n ∈ {1, . . . , N }.

Then, we apply the discrete Fourier transform to the se-
quence of the complex functions {w1, . . . , wN }

ck = 1

N

N−1∑
n=0

wn+1 exp

(
−√−1

2πkn

N

)
∀k ∈ {0, . . . , N − 1}.

The set of these N complex numbers {c0, . . . , cN−1} is
protrusion Fourier descriptor and we use the set of 2N
real numbers {�(c0), (c0), . . . , �(cN−1), (cN−1)} as the
feature vector of each shape in statistical analysis.

Appendix B. Inverse Transform from PFD to
Curve Shape

When we think about curves of constant curvature, it can
be easily imagined that there exist trillions of curves that
have the same protrusions but different total lengths. So if
the total length is unknown, the curve shape associated with
a given PFD can not be uniquely identified. Assume that
we know the total length. Suppose the curve to be obtained
from the PFD is represented as C = {p1, . . . , pN }, a set
of N equally-spaced points which are ordered from the
starting point to the ending point, and θi � pi+1 pi pi−1 for
i ∈ {2, . . . , N − 1}. The curve shape is specified by
N −2 parameters {θ2, . . . , θN−1}. Using the inverse Fourier
transform from the PFD, we can obtain aL

i and aR
i , the left

and right protrusions associated with each point pi ∈ C
as shown in Fig. 2(a). We devised the physical model
so that, starting from the arbitrary curve shape, the shape
changes in such a way that the protrusions gradually come
close to the corresponding target protrusions. Suppose the
changing curve shape is represented as C̃ = { p̃1, . . . , p̃n},
and ãL

i and ã R
i are respectively the left and right protrusions

at p̃i ∈ C̃ . In this model, the point p̃i is acted on by
two forces F L

i and F R
i , which magnitudes are respectively

aL
i − ãL

i and −(aR
i − ã R

i ), and their directions are the normal
direction of the curve at the point (the left of the curve is
the positive direction). That is, each point of the curve
is acted on by normal forces from the left and the right,
in such a way that the point is pushed or pulled whether
the protrusion associated with the point is smaller or larger
than the corresponding target protrusion. And in this model,
p̃i ∈ { p̃2, . . . , p̃N−1} is acted on by the the force moment

propotional to the following value.

Nα
i =

N∑
j=1

(−1)l(i< j)φ|i− j |( p̃ j − p̃i ) × (Fα
j − Fε

i )

for α = L , R

where × indicates vector product, I (·) is indicator function,
and φ is set as a uniform random number 0 < U < 1 at each
time step. φ|i− j | represents the effect that influence of the
force attenuates as an exponential function of the number
of joints which exist between p̃i and p̃ j , and φ represents
the hardness of the curve. For p̃i , we randomly choose
either N L

i or N R
i , and add the small value propotional to

the chosen moment to θ̃i = � p̃i+1 p̃i p̃i−1. By the way,
the points belong to the convex hull need special handling.
Left and right convexes are defined in the following way:
p̃i is left convex if � p̃k p̃i p̃ j < 180◦ for any ( j, k) where
1 ≤ j < i < k ≤ N , and similarly p̃i is right convex if
� p̃k p̃i p̃ j > 180◦ for any ( j, k). When p̃i is left convex, if θ̃i

is slightly changed subject to N L
i , N L

i does not come close
to zero. And so, when p̃i is left convex, we set N L

i = 0.
The right side is also handled similarly.

Iterating this process gradually decreases the whole stress
produced by forces acting on the curve, and the curve shape
continues to move unless the whole stress becomes to zero.
By the way, the reason why we do not used N L

i + N R
i and

randomly choose either N L
i or N R

i when updating the θ̃i , is
to avoid the case that the moment equilibrium is established
throughout the curve, and the curve shape stop chaning
although the shape is not optimal. Figure B.1 shows the
process of finding the curve shape corresponding to a given
PFD. The initial state of the shape is set as the straight
line, the curve shape changes little by little using the above
procedure, and gradually come close to the original curve
shape. In this way, if the total length is known in advance,
we can find the optimal curve shape for a given PFD.

Appendix C. Fitting Regularized Logistic Regres-
sion Model

Suppose x = (1, x1, . . . , xk, . . . , xK ) is a feature vector
of each object, and whole variation in data is divided into
independent components using principal component analy-
sis in advance. The fact that a object belongs to a certain
class j is represented by M dimensional 0/1 valued vector
y = (y1, . . . , yM) in which y j = 1 and all other entries are
0. Logistic regression model returns a estimatie of proba-
bility that a datum x belongs to a class j ′ in the following
way:

p(y j ′ = 1|x, B) = exp(βT
j ′ x)∑M

j=1 exp(βT
j x)

. (C.1)

This model is parameterized by a vector B =
(βT

1 , . . . , βT
M)T with each parameter vector β j correspond-

ing to the class j : β j = (β j1, . . . , β j,(K+1))
T. Since

probabilities must sum to 1:
∑

j p(y j = 1|x, B) =
1, one of β j can be set as β j = 0 without affect-
ing the generality. The goodness of the model can be
evaluated via GIC, and does not have to perform cross-
validation. When the number of training examples is small
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(1) (2) (3)

(4) (5) (6)

Fig. B.1. Process of the inverse transform from a PFD to its corresponding curve shape. Black line is the original curve and red line is the curve
changing its shape.

and the number of dimensions of feature vectors is large,
regularization is required to avoid overfitting. We esti-
mated parameters of the model by maximizing the fol-
lowing L2-regularized log-likelihood with dataset D =
{(x (1), y(1)), . . . , (x (i), y(i)), . . . , (x (N ), y(N ))},

l(B|D)

=
N∑

i=1

{
M−1∑
j=1

y(i)
j βT

j x (i) − log

[
1 +

M−1∑
j=1

exp(βT
j x (i))

]}

−λN
M−1∑
j=1

βT
j β j , (C.2)

where λ is a regularization parameter, a positive constant
we must specify in advance. As mentioned in (Perkins
and Theiler, 2003), All the features used as input to the
model should have a similar scale, because the regular-
izer in Eq. (A.2) penalizes all weights in the model uni-
formly. We standardized all explanatory variables (the prin-
cipal component scores) to have mean 0 and variance 1 be-
fore training the model, and solved the above optimization
problem with Newton-Raphson iterations.

Appendix D. Hyper-Parameter Setting
The purpose of this experiments is to roughly compare

the degrees of inter-strains separateness in feature space be-
tween when using TFD and when using PFD, not to identify
the true model generating the data. So we fitted the model to

the data with the hyperparameter λ fixed in a default value
and did not tune λ. Now we explain the default value set-
ting of the hyperparameter directly from the training data.
Regularized log-likelihood of this model is

log

[
exp(βT

j ′ x)

1 + ∑M−1
j=1 exp(βT

j x)

]
− λ

M−1∑
j=1

βT
j β j .

Since all explanatory variables are standardized in advance,
assuming that the same class of data exist in almost the same
direction, for estimated β j , if j is the class which x belongs
to, |βT

j x | ≈ ‖β j‖ · ‖x‖, or else, |βT
j x | is a small value, then

exp(βT
j x) ≈ 1. Suppose b is the typical l2-norm of β j and

m is the mean l2-norm of the data, roughly we have the
following relationship.

∂

∂b

[
log

(
exp(bm)

M − 1 + exp(bm)

)
− λ(M − 1)b2

]
= 0.

Solving for λ yields

λ = M − 1

M − 1 + exp(bm)
· m

2(M − 1)b

= m2

2(M − 1)
(1 − p)

{
log

[
p

1 − p
(M − 1)

]}−1

,

(D.1)
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where

p = exp(bm)

M − 1 + exp(bm)
,

p is an arbitrary value of probability we wish to have as an
output for typical data. We set p = .9 in this experiment.
Since all explanatory variables are standardized, m2 = K +
1 (number of explanatory variables plus 1 for the constant
term). Regularization parameter can be set from the mean
l2-norm of the data using Eq. (C.3). This hyperparameter
setting is loosely inspired by the method proposed to choose
the regularization parameter of support vector machines in
(Cherkassky and Ma, 2004) .

Appendix E. Generalized Information Criterion
GIC is a model evaluation criterion which is introduced

by Konishi and Kitagawa (1996) as an estimate of Kullback-
Leibler divergence between a supposed statistical model
and an underlying true model. The GIC can be used even if
the parametric family of a supposed statistical model does
not contain the true model which generates the data, or if
the model was estimated via regularization (maximum pe-
nalized likelihood estimation). Suppose θ̂λ is the estimate
of a parameter vector θ , which is obtained by maximizing
the penalized log-likelihood

∑N
i=1 log f (x (i)|θ) − λNk(θ),

where f (x |θ) is the density function of a supposed sta-
tistical model, λ is a regularization parameter, and k(θ)

is a penalty function. Taking ψ(z, θ) = ∂{log f (z|θ) −
λk(θ)}/∂θ , the GIC for the model f (x |θ̂λ) is

G I C = −2
N∑

i=1

log f (x (i)|θ̂λ) + 2tr(J−1 I ),

where

I = 1

N

N∑
i=1

ψ(x (i), θ̂λ)
∂ log f (x (i)|θ)

∂θT

∣∣∣
θ̂λ

,

J = − 1

N

N∑
i=1

∂ψ(x (i), θ)T

∂θ

∣∣∣
θ̂λ

.

The GIC which evaluates the goodness of the logistic re-
gression model (Eq. (C.2)) is

G I C

= −2
N∑

i=1

{
M−1∑
j=1

y(i)
j β̂T

j x (i) − log

[
1 +

M−1∑
j=1

exp(β̂T
j x (i))

]}

+2tr(J−1 I ), (E.1)

where I and J are (K + 1)(M − 1)-by-(K + 1)(M −
1) matrices, the (n, m) entries of I and J are as follows,
(where n = ( j ′ −1)(K +1)+k ′, m = ( j ′′ −1)(K +1)+k ′′,
and j ′, j ′′ ∈ {1, . . . , M − 1}, and k ′, k ′′ ∈ {1, . . . , K + 1},)

Inm = 1

N

N∑
i=1

[(y(i)
j ′ − p(i)

j ′ )x (i)
k ′ − 2λβ̂ j ′k ′ ][(y(i)

j ′′ − p(i)
j ′′ )x (i)

k ′′ ],

Jnm = − 1

N
(p(i)

j ′′ − δ j ′ j ′′)p(i)
j ′ x (i)

k ′ x (i)
j ′′ + 2λδ j ′ j ′′δk ′k ′′ ,

where

p(i)
j ′ = exp(β̂T

j ′ x (i))∑M
j=1 exp(β̂T

j ′ x (i))
, δab =

{
1 if a = b

0 otherwise.
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