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This paper presents a simple geometric model of rapid transit system which provides a direct access to a
particular destination such as an airport located outside the city area. The time to access the airport is the
combination of the time to the terminal station using intra-city transportation and the time to the airport using
the rapid transit system. Two problems concerning the optimal location of the terminal station are considered:
minimization of the average access time and maximization of the number of users accessible to the airport within
a given time. In the minimization problem, the optimal location of the terminal station is explicitly derived as a
function of the speed ratio of the intra-city transportation and the rapid transit system.
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1. Introduction
In this paper, we present a simple geometric model which

describes the optimal location of the terminal station of
rapid transit system. As shown in Fig. 1, the model assumes
a planar region over which demand points are continuously
distributed. There is a particular destination such as an
airport located outside the city area. The time required
to access the airport is the combination of the time to the
terminal station located in the city and the time to the airport
by using the rapid transit system. Under these assumptions,
we consider the following two problems concerning the
optimal location of the terminal station: minimization of
the average access time and maximization of the number of
users accessible to the airport within a given time.

Our objective is to analyze how the location of the ter-
minal station of rapid transit affects the average access time
and the number of users accessible to the airport within a
given time, and to find how the optimal location is deter-
mined by the speed ratio of intra-city transportation and
rapid transit. In this paper, using a continuous modeling
approach, we construct a simple circular city model with a
radial-circular network. While strong assumptions needed
to develop simple analytic models limit their direct appli-
cability to real-world instances, the insights obtained from
these simple models can be applicable in a range of con-
texts. With appropriate modifications, our model can be
applied to various situations with a similar structure: send-
ing spatially scattered objects to an important destination by
first collecting them to a certain point. For example, in case
of disaster, in order to let sufferers effectively evacuate to
a safer location, selecting an appropriate pickup point is of
vital importance.

The following is an outline of this paper. In Sec. 2, ba-
sic assumptions and some important properties of a radial-
circular network are discussed. The distribution of distance

and the average distance between demand points spatially
distributed over a circular city to a fixed point (terminal
station) are introduced which are employed in the follow-
ing analysis. Then, in Sec. 3, we formulate two optimal
location problems of the terminal station: minimization of
the average access time and maximization of the number of
users accessible to the airport within a given time. In par-
ticular, in the minimization problem, the optimal location
of the terminal station is explicitly derived and the condi-
tion of the optimal location being at the city center is also
discussed. Next, in Sec. 4, some numerical examples are
presented. Graphs of the average access time and the num-
ber of users accessible to the airport are plotted as a function
of the location of the terminal station and the speed ratio
of the intra-city transportation and the rapid transit. And
finally, in Sec. 5, we offer some concluding remarks and
future directions of this study.

2. Assumptions and Model Description
A circular city of radius R with a radial-circular network

is assumed as shown in Fig. 2. This idealized system of net-
work consists of radial roads running in all directions from
the city center and ring roads concentric with the city center.
A simple geometric model of rapid transit system shown in
Fig. 3 is considered. The distance between a destination
and the city center is denoted by h. In the following, we
call a destination an airport and demand points homes for
simplicity. We make the following assumptions:

(i) Homes are uniformly distributed over the city;
(ii) The city has an infinitely dense radial-circular net-

work;
(iii) Travelers choose the shortest route from home to the

station.
The assumption (i) of uniformly distributed homes is

widely used in the fields of transportation planning, regional
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Fig. 1. Access to the airport by using rapid transit system.

science, location theory, etc. This idealized assumption al-
lows us to treat the problem analytically and to discover
geometric and morphological properties of the model un-
der investigation. In addition, a uniform model provides
a first approximation of the more “realistic” model having
location-dependent densities.

From the assumptions (ii) and (iii), two types of shortest
routes between two points are obtained as shown in Fig. 2:
route I that uses both ring road and radial road, route II that
uses only radial roads passing the city center. It is known
that when the angular difference between two points is less
than 2 radian the route I is the shortest route and otherwise
the route II is the shortest route (Holroyd, 1966; Larson and
Odoni, 1981; Vaughan, 1987; Kurita, 2001). This routing
system is called polar routing as the movement of people in
the city is restricted over the dense polar mesh. The metric
is also called the Karlsruhe metric (Okabe et al., 2000).
Some properties of a radial-circular network are explained.
We introduce the polar coordinates with its origin at the city
center. Let the location of a home be denoted by

P = (y, θ) (0 ≤ y ≤ R, 0 ≤ θ < 2π). (1)

Let s be the Karlsruhe metric between P and the fixed ter-
minal station located at Q(x, 0) as shown in Fig. 4. Notice
that we can fix the location of Q(x, 0) at any arbitrary angle
from the fixed reference line because of radial symmetry.
Then s is given as follows:

s =
{

min{x, y}ω + |x − y| (0 ≤ ω < 2)

x + y (2 ≤ ω < π),
(2)

where ω is the angular difference of P and Q:

ω = min{θ, 2π − θ}. (3)

We introduce the distribution of distance and the aver-
age distance between points uniformly distributed over a
circular city to a fixed point obtained in Kurita (2001). The
derivation procedure for the cdf of s, denoted by 
(s|x),
is briefly explained. It should be noted that the following
method can also be applied to the non-uniform case. 
(s|x)

is the proportion of homes from which Karlsruhe distance
to the fixed point Q(x, 0) is less than or equal to s. To cal-
culate this measure, the proportion of homes within a given
equi-distant contour from Q is specified. Figure 5 shows
equi-distant contours of s from various fixed locations of
Q. As can be seen from Fig. 5, the shape of the contours
changes with the relative positions of the location of the

fixed point x and the distance s. Therefore, 
(s|x) is ex-
pressed differently depending on x and s. When homes are
uniformly distributed in a circular city, 
(s|x) can be de-
rived as follows:

(i) 0 ≤ x ≤ R/3


(s|x)

=




s3 + 6xs2

3π R2x
(0 ≤ s ≤ x)

1

3π R2x
{s3 + (3π − 6)xs2 + (24 − 6π)x2s

−(12 − 3π)x3}
(x < s ≤ 2x)

1

3π R2
{3πs2 − (6π − 12)xs + (3π − 4)x2}

(2x < s ≤ R − x)

1

3π R2x
[−s3 + (3π − 3)xs2 + {3R2 − (6π − 9)x2}s
+(3π − 5)x3 + 3R2x − 2R3]

(R − x < s ≤ R + x)

(4)

(ii) R/3 < x ≤ R/2


(s|x)

=




s3 + 6xs2

3π R2x
(0 ≤ s ≤ x)

1

3π R2x
{s3 + (3π − 6)xs2 + (24 − 6π)x2s

−(12 − 3π)x3}
(x < s ≤ R − x)

1

3π R2x
[(3π − 9)xs2 + {3R2 + (21 − 6π)x2}s
−(13 − 3π)x3 + 3R2x − 2R3]

(R − x < s ≤ 2x)

1

3π R2x
[−s3 + (3π − 3)xs2 + {3R2 − (6π − 9)x2}s
+(3π − 5)x3 + 3R2x − 2R3]

(2x < s ≤ R + x)

(5)

(iii) R/2 < x ≤ R


(s|x)

=




s3 + 6xs2

3π R2x
(0 ≤ s ≤ R − x)

1

3π R2x
{3xs2 + (3R2 − 3x2)s − (R − x)2(2R + x)}

(R − x < s ≤ x)

1

3π R2x
[(3π − 9)xs2 + {3R2 + (21 − 6π)x2}s
−(13 − 3π)x3 + 3R2x − 2R3]

(x < s ≤ 2x)

1

3π R2x
[−s3 + (3π − 3)xs2 + {3R2 − (6π − 9)x2}s
+(3π − 5)x3 + 3R2x − 2R3]

(2x < s ≤ R + x)

(6)

The corresponding pdf of s, denoted by ψ(s|x), is ob-
tained by differentiating the above cdf with respect to s as
follows:
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route I

Q

route II

R

Fig. 2. A circular city with radial-circular network and the shortest
routes between two points.
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Fig. 3. A simple geometric model of rapid transit system.

(i) 0 ≤ x ≤ R/3

ψ(s|x)

=




s2 + 4xs

π R2x
(0 ≤ s ≤ x)

1

π R2x
{s2 + (2π − 4)xs + (8 − 2π)x2}

(x < s ≤ 2x)

1

π R2
{2πs − (2π − 4)x}

(2x < s ≤ R − x)

1

π R2x
{−s2 + (2π − 2)xs − (2π − 3)x2 + R2}

(R − x < s ≤ R + x)

(7)

(ii) R/3 < x ≤ R/2

ψ(s|x)

=




s2 + 4xs

π R2x
(0 ≤ s ≤ x)

1

π R2x
{s2 + (2π − 4)xs + (8 − 2π)x2}

(x < s ≤ R − x)

1

π R2x
{(2π − 6)xs + (7 − 2π)x2 + R2}

(R − x < s ≤ 2x)

1

π R2x
{−s2 + (2π − 2)xs − (2π − 3)x2 + R2}

(2x < s ≤ R + x)

(8)

(iii) R/2 < x ≤ R

ψ(s|x)

=




s2 + 4xs

π R2x
(0 ≤ s ≤ R − x)

1

π R2x
{2xs − x2 + R2}

(R − x < s ≤ x)

1

π R2x
{(2π − 6)xs + (7 − 2π)x2 + R2}

(x < s ≤ 2x)

1

π R2x
{−s2 + (2π − 2)xs − (2π − 3)x2 + R2}

(2x < s ≤ R + x)

(9)

F

3P

2P

1P

O
Q( ,0)x

Fig. 4. Access to the airport by three different origins over a radial-circular
network.

The average value of the distance s between homes dis-
tributed over a circular city to the fixed terminal station is
obtained by the following integration:

E(s|x) =
∫ R+x

0
sψ(s|x)ds. (10)

By calculating Eq. (10) using Eqs. (7), (8) and (9), we
obtain the same value of E(s|x) which is the cubic function
of the location of the terminal station x :

E(s|x) = 2

3π R2
x3 +

(
1 − 2

π

)
x + 2R

3
. (11)

3. Formulation of Problems
3.1 Minimization of the average access time

Let us denote the average access time by f (x) as a func-
tion of the location of the terminal station x . The average
access time from uniformly distributed points in the city to
the airport is the combination of the average access time to
the terminal station and the time to the airport by using the
rapid transit. Therefore, f (x) is given as follows:

f (x) = 1

w

{
2

3π R2
x3 +

(
1 − 2

π

)
x + 2R

3

}
+ h − x

v
.

(12)

Our aim here is to find x = x∗ which minimizes the average
access time to the airport:

minimize
x

f (x) (13)
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(a) (b) (c) 

(d) (e) (f) 

Fig. 5. Equi-distance contours to various locations of fixed points Q(x, 0): (a) x = 0; (b) x = 0.2R; (c) x = 0.4R; (d) x = 0.6R; (e) x = 0.8R; (f)
x = R.
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Fig. 6. The optimal location of the terminal station as a function of the
speed ratio of intra-city transportation and rapid transit system.

The first and second derivatives of f (x) is given as follows:

f ′(x) = 1

w

(
2

π R2
x2 + 1 − 2

π

)
− 1

v
, (14)

f ′′(x) = 1

w
· 4x

π R2
. (15)

These equations show f (x) is a strictly convex function.
Let x = x̃ be the solution of the equation of f ′(x) = 0.

Then x̃ is obtained as follows:

x̃ = R

√
π

2

(
w

v
− π − 2

π

)
. (16)

The value of the first derivative at the peripheral of the city,
x = R, is given by

f ′(R) = 1

w
− 1

v
. (17)

This indicates f ′(R) > 0 by the assumption of w < v.

O
F

1R = 2h =

Circular City
Destination

(Airport)

Fig. 7. The parameter setting for the following numerical example.

Consequently, the optimal location of the station is given
by x∗ = x̃ when 0 ≤ x̃ and x∗ = 0 otherwise. From the
above argument, the minimizer of f (x) is given as follows:

x∗ =




0 when
v

w
≥ π

π − 2
,

R

√
π

2

(
w

v
− π − 2

π

)
when

v

w
<

π

π − 2
.

(18)

Equation (18) shows that if the rapid transit system has
sufficiently high rapid, that is the speed ratio c = v/w is
more than π/(π − 2) ≈ 2.752, the desirable location of
the terminal station is at the city center. Figure 6 shows
the optimal location x∗/R as a function of the speed ratio
c = v/w.
3.2 Maximization of the number of users accessible to

the airport within a given time
The number of people accessible to a fixed point (such

as an important facility) within a given time is an important
measure for evaluating the accessibility of the point under
study. In this section, we consider the problem of maximiz-
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x

/c v w=

( )f x

Fig. 8. 3D plot of the average access time as a function of the
location of the terminal station and the speed ratio.

x

/c v w=

Fig. 9. Contour plot of the average access time as a function of the
location of the terminal station and the speed ratio.
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Fig. 10. The average access time as a function of the lo-
cation of the terminal station for various speed ratios for
c < π/(π − 2) ≈ 2.752.
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Fig. 11. The average access time as a function of the lo-
cation of the terminal station for various speed ratios for
c ≥ π/(π − 2) ≈ 2.752.

ing the number of users who can access the airport within a
given time u.

Let us denote the proportion of users accessible to the
airport within a given time by p(x) as a function of the
location of the terminal station. To derive this function, the
cdf of access time t, �(t |x), should be obtained since

p(x) = �(t = u|x). (19)

By considering that the access time t to the airport is given
by

t = s

w
+ h − x

v
, (20)

�(t |x) can be related to 
(s|x), the cdf of the Karlsruhe
distance s to the station from points uniformly distributed
over the circular city considered in the proceeding section.
It should be noted that the minimum access time is given by
(h − x)/v and the maximum access time by (R + x)/w +
(h − x)/v. The second term of Eq. (20) can be treated
as a fixed constant τ , so that s = w(t − τ). Using this

relationship, the cdf of the access time t, �(t |x), can be
related to 
(s|x) as follows:

�(t |x) = Pr
{ s

w
+ τ ≤ t

}
= Pr{s ≤ w(t − τ)} = 
(w(t − τ)|x)(

h − x

v
≤ t ≤ R + x

w
+ h − x

v

)
. (21)

From the above discussions, the problem of maximizing the
proportion of users accessible to the airport within a given
time u can be formulated as follows:

maximize
x

p(x) = 
(w(u − τ)|x). (22)

The pdf of access time t, ϕ(t |x), is in itself an important
index which describes the accessibility measure for the air-
port on a city-wide basis. By differentiating �(t |x) with
respect to t , we obtain the probability density function of t
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x
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Fig. 12. 3D plot of the users accessible to the airport as a function
of the location of the terminal station and the speed ratio.

/c v w=

x

Fig. 13. Contour plot of the users accessible to the airport as a
function of the location of the terminal station and the speed ratio.
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Fig. 14. The users accessible to the airport as a function of the
location of the terminal station for various speed ratios.
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Fig. 15. The users accessible to the airport as a function of the
location of the terminal station for various access time threshold.
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Fig. 16. The pdf of the access time t for c = 2.
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Fig. 17. The pdf of the access time t for c = 6.
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as follows:

ϕ(t |x) = �′(t |x) = w
 ′(w(t − τ)|x)

= wψ(w(t − τ)|x)(
h − x

v
≤ t ≤ R + x

w
+ h − x

v

)
. (23)

4. Numerical Examples
In this section, graphs of the average access time and

the number of users accessible to the airport derived in the
proceeding section are presented. In the following example,
parameter values of R = 1, h = 2, and w = 1 are assumed
as illustrated in Fig. 7.

Figures 8 and 9 show the 3D plot and the contour plot of
the average access time as a function of the location of the
terminal station and the speed ratio. In Fig. 9 the optimal
location of the terminal station for each speed ratio is also
shown. In Figs. 10 and 11, the average access time are
shown as a function of the location of the terminal station
for c < π(π −2) and c ≥ π(π −2) for various speed ratios.

In Figs. 12 and 13, the 3D plot and the contour plot of
the number of users accessible to the airport within a time
u = 1.2 are shown as a function of the location of the
terminal station and the speed ratio. In Fig. 13 the optimal
location of the terminal station numerically calculated for
each speed ratio is also shown. In this case, the optimal
location is discontinuous around c = 3.784; when c is more
than this value, the optimal location coincides with the city
center. In Fig. 14, the graph of p(x) for various values of
the speed ratio c is shown. In Fig. 15, the graph of p(x)

for various values of access time threshold u is shown. As
can be seen from Fig. 15, optimal location of the terminal
station will be closer to the city center as the value of u
increases.

In Figs. 16 and 17, the pdf of the access time t, ϕ(t |x), as
formulated in Eq. (23) for c = 2 and c = 6 are shown. The
optimal location of the terminal station which minimizes
the average access time for Fig. 16 is about x∗ ≈ 0.463R
while that of Fig. 17 is x∗ = 0. As can be seen from Fig. 17,
if the rapid transit has sufficiently high speed, the advantage
of the terminal station being at the city center is obvious
because of its high accessibility.

5. Conclusion and Future Work
In this paper, we have presented a continuous model of

rapid transit system which provides a direct access to a par-
ticular destination located outside a city area. Two problems
concerning the optimal location of the terminal station have
been considered: minimization of the average access time
and maximization of the number of users accessible to the
airport within a given time. In the minimization problem,
the optimal location of the terminal station has been explic-
itly derived as a function of the speed ratio. We have also

shown that the condition of the optimal location being at
the city center is given by c ≥ π/(π − 2) ≈ 2.752. This
result suggests that it is desirable to construct the terminal
station of a super high-speed transit close to the city cen-
ter. The proposed model can be a basic model to describe
super-rapid transit, such as MagLev transportation (RTRI,
2004).

There are many interesting possible directions for this
work.

For example, more than two circular regions can be in-
corporated in our model. This model can be considered as
a basic model for evaluating the location of terminal sta-
tions for inter-city rapid transit. In the area of computa-
tional geometry, similar problems of bridging convex re-
gions are proposed such as the minimum diameter bridge
problem (MDBP) (Cai et al., 1999). It is interesting to in-
troduce speed difference between intra-regional movement
and movement on the bridge into these problems as pre-
sented in this paper.

The case when the airport is located within a city area
should also be considered. It is also interesting to consider
the situation in which there are multiple stations on the rapid
transit system.

Another possible extension of this work is to consider
a non-uniform spatial distribution of homes. Some simple
models assuming a decreasing falloff from the city center
could provide a closed form optimal location of the termi-
nal station for the minimization problem. An interesting
problem is to compare between a non-uniform density and
the uniform density the condition of the optimal location
being at the city center, and how this condition changes as
the value of the deterrence parameter representing the de-
creasing effect of a density from the city center changes.

To consider other metrics such as Manhattan distance,
Euclidean distance can also be an interesting possibility. An
analysis using real network data such as railway network
and road network should also be explored.
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