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This paper proposes a maximum flow-covering location model with a time dimension. A facility which
provides service for a given duration in a day is assumed. The number of potential customers is defined as
the number of commuters on their way home from work that can fully consumes the service from start to end and
can arrive home by a given time. The problem seeks the location and the start time of the service which covers
as many commuters as possible. This model can be applied to various situations in which the selection of service
providing time greatly influences the number of customers captured.
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1. Introduction
In the areas of operations research and management sci-

ence, various facility location models have been proposed.
Most of these location models only consider the spatial
configuration of facilities which optimizes certain objec-
tive function (Daskin, 1995; Drezner, 1995; Drezner and
Hamacher, 2001).

There are some location problems which explicitly
consider the temporal factors into account (Drezner and
Wesolowsky, 1991; Current et al., 1998; Snyder, 2006;
Farahani et al., 2008). Most of these dynamic models incor-
porate some aspects of future uncertainty such as changes
of demands, market trend over time, and consider the tim-
ing of locating facilities in the planning horizon. Although,
these models consider the temporal axis over the long term,
the model focusing on facility management on a daily basis
has not been sufficiently addressed so far.

Tanaka proposed a single facility location model in a lin-
ear city considering not only the location of the facility but
also the opening hours of the facility within a day (Tanaka,
2006). In this paper, two dimensional extension of Tanaka’s
model is proposed by considering the problem within a cir-
cular city. The model is formulated as a flow-covering loca-
tion problem in which demand for service occurs not from
the demand points but from customers travelling between
two points within a city. The model assumes commuters on
their way home from work as potential customers for the
service. To describe temporal variation of demands, depar-
ture time distribution of commuters is introduced. Under
these assumptions, the model to find the location of the fa-
cility and the start time for service with a given duration
that maximizes the number of potential customers is con-
structed.

In the following section, we will call the proposed prob-
lem the concert problem to describe the situation intuitively.
This name comes from the situation that organizers of a
concert are considering the location of a concert hall and

start time of a concert which attract as many commuters as
possible.

2. The Model and Basic Assumptions
In this section, we consider the concert problem in a

circular city of radius R. Let us consider the situation in
which the organizer of the concert which lasts c hours is
considering where to find a concert hall and when to start
the concert. For the organizer, it is desirable to select the
location and start time so that lots of people can attend the
concert.

As shown in Fig. 1, the location of a concert hall is de-
noted by (z, θ) using polar coordinates with its origin at the
city center. Let τ be the start time of the concert. We con-
sider the problem of deciding the optimal location of the
concert hall (z∗, θ∗) and the best start time of the concert
τ ∗ which maximize the number of potential customers. The
definition of potential customers is given as follows: com-
muters that can attend the concert from start to end and can
go back home by a given time th. If τ is too small, few peo-
ple can be in time for the start time; on the other hand, if τ

is too large, few people can be back home by th after attend-
ing the concert. Because of this trade-off relationship, there
exists the optimal start time of the concert τ ∗.

Let us introduce the temporal axis perpendicular to the
circular city as shown in Fig. 2. We denote the location of a
workplace and a home by (s1, φ1) and (s2, φ2) respectively
with those origins at the concert hall (z, θ). The duration of
concert time c is assumed to be a fixed constant, so that the
concert plan can be represented by a point (z, θ, τ ) in the
space-time region. In Fig. 2, the movement of a potential
customer in the space-time region is shown. The following
assumptions are made:

(i) The number of commuters having workplaces in unit
area at (s1, φ1) and having homes in unit area at
(s2, φ2) is given by ρ(s1, φ1, s2, φ2);
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Fig. 1. A circular city of radius R.
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Fig. 2. Movement of a potential customer in the space-time region.

(ii) The cumulative distribution of the departure time t of
commuters is given by F(t);

(iii) The distance between any two points is measured by
Euclidean distance;

(iv) The traveling speed of commuters is given by a fixed
constant v.

The function ρ(s1, φ1, s2, φ2) is called the trip den-
sity which is the continuous counterpart of the origin-
destination (OD) matrix (Vaughan, 1987). By the defini-
tion of trip density, the number of commuters having work-
places within a small region at (s1, φ1) with area s1ds1dφ1

and having homes within a small region at (s2, φ2) with area
s2ds2dφ2 is given by

ρ(s1, φ1, s2, φ2)s1s2ds1dφ1ds2dφ2.

The departure time distribution of commuters means the
proportion of commuters that can leave their workplace by
time t . In this paper, we assume that F(t) is not dependent
on the location of workplace and home. The time t = 0
corresponds to the time of the first commuter leaves one’s
workplace.
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R

Fig. 3. Small region from which the travel time to the concert hall is s1/v.
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Fig. 4. Transformation of coordinates from (x1, ψ1) to (s1, φ1).

3. Formulation
In this section, we formulate the concert problem. Let us

denote the number of potential customers by n(z, θ, τ ) as a
function of the location of a concert hall and the start time.
The aim of the concert problem is to find the location and
the start time of the concert which maximize this function.
If the end time τ + c exceeds th no one can go back home
by th so τ + c must be before th. This leads that the start
time τ must be determined in the range τ ∈ [0, th − c].

In the following, the objective function n(z, θ, τ ) is de-
rived. Let us consider the condition that a given commuter
be a potential customer. To be a potential customer, the fol-
lowing two conditions have to be met:

(i) Workplace and home of a given commuter must be in
region A and region B respectively as shown in Fig. 2.

(ii) This commuter has to leave workplace early enough to
be in time for the start time of the concert τ .

The region A is the set of points (workplaces) from which
the travel time to the concert hall is within τ , while the
region B is the set of points (homes) to which the travel
time from the concert hall is within (th − τ − c). By the
assumption of constant travel speed, region A represents the
intersection of the circle of radius vτ centered at (z, θ) and
the circular city and region B represents the intersection of
the circle of radius v(th − τ − c) centered at (z, θ) and the
circular city.

Let us consider the condition (i). First, focus on the set of
commuters S whose workplaces are within a small region in
A with area s1ds1dφ1 and whose homes are within a small
area in B with area s2ds2dφ2. The number of commuters
in S is given by ρ(s1, φ1, s2, φ2)s1s2ds1dφ1ds2dφ2 by the
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Fig. 5. The set of workplaces from which the access time to the concert hall is within τ as represented by region A. (a) 0 ≤ τ ≤ R−z
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Fig. 6. The set of homes to which the access time from the concert hall is within th − τ − c as represented by region B. (a) th − c − R−z
v

≤ τ ≤ th − c,
(b) 0 ≤ τ ≤ th − c − R−z

v
.

definition of trip density.
Next, we focus on the number of potential customers in

S by considering the condition (ii). For a given commuter
in S to be a potential customer, this commuter must be in
time for the start time of the concert τ . This condition can
be restated that the commuter can leave their workplaces by

t = τ − s1/v,

considering that the travel time from workplace to the con-
cert hall is given by s1/v as shown in Fig. 3. Because the
proportion of commuters that can leave their workplace by
t = τ − s1/v is given by F(τ − s1/v), the number of poten-
tial customers in S is given as follows:

F (τ − s1/v) · ρ(s1, φ1, s2, φ2) s1s2ds1dφ1ds2dφ2. (1)

The total number of potential customers in the whole
city n(z, θ, τ ) can be obtained by integrating Eq. (1) within
region A and region B:

n(z, θ, τ ) =
∫∫

A

∫∫
B
F

(
τ − s1

v

) · ρ(s1, φ1, s2, φ2)

· s1s2ds1dφ1ds2dφ2. (2)

From the above discussions, the concert problem in a circu-

lar city can be formulated as follows:

max
z,θ,τ

. n(z, θ, τ ) (3)

s. t. 0 ≤ z ≤ R, 0 ≤ θ ≤ 2π, 0 ≤ τ ≤ th − c.

Given F(t) and ρ(s1, φ1, s2, φ2), Eq. (2) is calculable in
princple. The analytical calculation of the objective func-
tion, however, is complicated even under simple cases. In
addition, since the domain of integration changes depending
upon the set of parameter and variable values, determining
the domain of integration for each possible set of parame-
ter and variable values is almost intractable. By expressing
Eq. (2) more explicitly, however, the value of n(z, θ, τ ) can
be calculated numerically. In the following, the expression
of the objective function more suitable for numerical inte-
gration will be presented.

4. Calculation of the Objective Function
In this section, we assume that workplaces and homes

are independently distributed. Let us denote the location of
a workplace and a home by (x1, ψ1) and (x2, ψ2) respec-
tively by using polar coordinates with its origin at the city
center. From the independence assumption, trip density can
be described as follows (Vaughan, 1987):

ρ(x1, ψ1, x2, ψ2) = N · λ(x1, ψ1)µ(x2, ψ2), (4)
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Fig. 7. Distribution of workplaces (a) and homes (b) for case 1.

(a) (b)

Fig. 8. Distribution of workplaces (a) and homes (b) for case 2.

where N represents the total number of commuters,
λ(x1, ψ1) and µ(x2, ψ2) denote the number of workplaces
and homes per unit area at (x1, ψ1) and (x2, ψ2), respec-
tively. It should be noted that the origin of polar coordinates
in Eq. (4) is different from that of Eq. (2); the origin of the
former is the city center while that of the latter is the concert
hall. In the following analysis, we assume that workplaces
and homes are radially sysmetric; densities of workplaces
and homes are expressed as a function of the distance from
the city center only:

λ(x1, ψ1) = λ(x1), µ(x2, ψ2) = µ(x2). (5)

To carry out the integration in Eq. (2), trip density must
be expressed as a function of (s1, φ1, s2, φ2) instead of
(x1, ψ1, x2, ψ2). As illustrated in Fig. 4, the transforma-
tion of coordinates of workplaces from (x1, ψ1) to (s1, φ1)

is explained. Using the law of cosines, x1 can be related to
s1 and φ1 as follows:

x2
1 = s2

1 + z2 − 2s1z cos φ1. (6)

Similarly for homes, x2 can be related to s2 and φ2:

x2
2 = s2

2 + z2 − 2s2z cos φ2. (7)

Using these relationship, the densities of workplaces and
homes can be written as follows:

λ(x1) =λ

(√
s2

1 + z2 − 2s1z cos φ1

)
, (8)

µ(x2) =µ

(√
s2

2 + z2 − 2s2z cos φ2

)
. (9)

From the above discussions,

ρ(s1, φ1, s2, φ2) = N · λ

(√
s2

1 + z2 − 2s1z cos φ1

)

·µ
(√

s2
2 + z2 − 2s2z cos φ2

)
. (10)
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Fig. 9. Contour plot of n(z, θ, τ ) for case 1.
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Fig. 10. Contour plot of n(z, θ, τ ) for case 2.

By expressing trip density as a function of (s1, φ1, s2, φ2)

using the relationship shown in Eq. (10), n(z, θ, τ ) can be
calculated by carrying out the integration in Eq. (2) in prin-
ciple. The analytical calculation of the integral, however, is
very complicated. Depending on the set of parameter and
variable values, the shape of region A and region B varies
as illustrated in Figs. 5 and 6. The domain of integration
of Eq. (2) is given by the direct product of region A and
B. Therefore, there are four shapes of the domain of inte-
gration: A-(a) and B-(a), A-(a) and B-(b), A-(b) and B-(a)
and A-(b) and B-(b). In Eq. (11), Eq. (12), Eq. (13) and
Eq. (14), the expressions of the objective function corre-
sponding to the above four cases are presented. Although
it is very difficult to specify which of the four cases occurs
for each possible parameter and variable set, the domain of
integration can be easily specified given a parameter and
variable set. Consequently, the objective function can be
calculated by numerical integration.
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Fig. 11. Plot of n(z, θ, τ ) as a function of start time τ at three different
points in the city for case 1.
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Fig. 12. Plot of n(z, θ, τ ) as a function of start time τ at three different
points in the city for case 2.

where

s∗
1 = z cos φ1 +

√
z2 cos2 φ1 + R2 − z2,

φ∗
1 = arccos

(
z2 + v2τ 2 − R2

2vτ z

)
,

s∗
2 = z cos φ2 +

√
z2 cos2 φ2 + R2 − z2,

φ∗
2 = arccos

(
z2 + v2(th − τ − c)2 − R2

2v(th − τ − c)z

)
. (15)

5. Numerical Examples
In this section, we first consider the following two ra-

dially symmetric models for densities of workplaces and
homes.

case 1

λ(x1) = 1

π R2
, µ(x2) = 1

π R2
, (16)

case 2

λ(x1) = 2

π R2

(
1 − 1

R2
x2

1

)
, µ(x2) = 6

π R4
x2

2

(
1 − 1

R2
x2

2

)
.

(17)

The case 1 is the simplest model assuming that work-
places and homes are uniformly distributed within a city as
shown in Fig. 7. The case 2 assumes that workplaces are
densely distributed at the center and homes are densely dis-
tributed at some distance from the city center.

In the example below, the departure time distribution is
given by a linearly increasing function from 5:00 p.m. to
9:00 p.m. as shown in Figs. 9 and 10. We assume the
following parameter values: c = 3 hours, 2R/v = 2 hours,
th = 11 : 00 p.m. Under these assumptions, the objective
function n(z, θ, τ ) is calculated by numerical integration
for various values of (z, θ, τ ).

Figures 9 and 10 show the contour plot of n(z, θ, τ ).
From these figures, the unique optimal solution can be
found. In both cases, the optimal location of the concert
hall is at the city center: z∗ = 0. In the case of Fig. 9, the
optimal start time satisfies the distinctive property: the best
plan is to start concert as late as possible while satisfying
that every commuters attendable to the concert can also go
back home by th.

Figures 11 and 12 show n(z, θ, τ ) as a function of τ at
three different points in the city. The interesting point to
note is that the optimal start time depends upon the location
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Fig. 13. 3D plot of n(z, θ, τ ) as a function of the location of the concert hall at various start time for case 1.
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Fig. 14. 3D plot of n(z, θ, τ ) as a function of the location of the concert hall at various start time for case 2.

of the concert hall. As can be seen from Fig. 12, the city
center is not a good place for the concert when τ is large.
This is because that density of homes near the city center is
low; the number of commuters that can go back home by th
after the end of the concert τ + c is small.

In Figs. 13 and 14, n(z, θ, τ ) is shown as a function of
locations at various start time of the concert for case 1 and
case 2.

As the next example, we consider the case in which the
optimal location is not at the city center but the point some
distance from the center. Figure 15 shows the contour of

n(z, θ, τ ) and Fig. 16 shows the plot of n(z, θ, τ ) at three
different points in the city when c = 5 for case 2. Other
parameter values are the same as those of Fig. 9 to Fig. 12.
Interesting point to note is that the city center is not the best
place to find a concert hall. There exist points around the
densely populated areas that more people can go back home
by th after the end of the concert in comparison with the city
center.

Next, we investigate the effect of concentration of trip
origins and destinations at the city center on n(z, θ, τ ).
In Figs. 17 and 18, we compare the value of n(z, θ, τ ) at
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Fig. 15. Contour of n(z, θ, τ ) in which the optimal location is not at the
city center.
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Fig. 16. Plot of n(z, θ, τ ) in which the optimal location is not at the city
center.

z = 0 and z = 0.5R respectively between case 1 and case
3 in which both workplaces and homes are more densely
distributed at the city center:

case 3

λ(x1) = 2

π R2

(
1 − 1

R2
x2

1

)
, µ(x2) = 2

π R2

(
1 − 1

R2
x2

2

)
.

(18)

As can be seen from these figures, the concentration of ori-
gins and destinations at the city center makes the value of
n(z, θ, τ ) larger. This result indicates that concentration of
trip origins and destinations at the city center is advanta-
geous in terms of accessibility.

6. Future Works
In this paper, the continuous model of the maximum flow

covering location problem with temporal axis is proposed.
There are various future directions of this work.

Multi-facility location problems should be considered. In
this case, an algorithm to find optimal solutions should also
be developed.

The proposed model can be formulated as an integer
programming problem by constructing the discrete version
of this model. This model can be considered as an extended
version of the maximal flow covering problem by (Berman,
1997).
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Fig. 17. Comparison of n(z, θ, τ ) at z = 0 between two different trip
densities.
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Fig. 18. Comparison of n(z, θ, τ ) at z = 0.5 between two different trip
densities.

Another possible variation of this model is the cost min-
imization problem. By introducing the space-time cost for
accessing the service, the problem seeking the location and
the start time which minimizes the total space-time cost can
be constructed.

Examining the impact that a change of the departure time
distribution will have on the number of potential customers
is also important. This approach can be used to evaluate the
effects of flexible working hours on the space-time accessi-
bility of commuters to various services.
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