
Original Paper Forma, 23, 73–79, 2008

A Voronoi Heuristic Approach to Dividing Networks
into Equal-Sized Sub-Networks

Takehiro Furuta1∗, Atsuo Suzuki2 and Atsuyuki Okabe3

1Faculty of Engineering, Tokyo University of Science, 1-14-6 Kudankita, Chiyoda-ku, Tokyo 102-0073, Japan
2Faculty of Mathematical Sciences and Information Engineering, Nanzan University

3Faculty of Engineering, The University of Tokyo
∗E-mail address: takef@fw.ipsj.or.jp

(Received May 31, 2008; Accepted October 27, 2008)

We analyze the division of a connected network into p connected sub-networks with equal sizes in terms of
network edge length. To find divisions, we minimize the sum of the absolute values of the difference between the
average total edge length of p sub-networks from the total edge length of the network and the total edge length of
each sub-network. Here, we propose a heuristic approach to the problem using a network Voronoi diagram and a
linear programming formulation, and report computational experiments for actual road networks in Japan.
Key words: Network Division Problem, Network Voronoi Diagram, Linear Programming

1. Introduction
In this paper, we consider the problem of dividing a

network into equal-sized sub-networks, where we assume
that the network and the sub-networks are connected, and
that network sizes are measured by the sum of their edge
lengths. We assume that each edge represents not only the
relation between the end vertices of the edge but also the in-
finite collection of points along it. It is important to consider
this assumption in urban research, where many objects ex-
ist along network edges. For example, facilities exist on the
edges of a road network. There have been numerous appli-
cations of this problem thus far (Shiode and Okabe, 2004;
Suzuki and Drezner, 2008), including the following two ex-
amples. The first application is related to the equitable load
model. Equitability is desirable for public and emergency
systems. Baron et al. (2007) and Suzuki and Drezner (2008)
proposed the equitable load model for an area. They di-
vide an area into equal-sized sub-areas. However, in many
cases we should consider the model on a network. Many ob-
jects in urban areas exist adjacent to streets or move along
them. For example, response areas of an ambulance system
should be along road networks, where patients are adjacent
to streets and ambulances travel along them. If we divide
the road network into equal-sized sub-networks and apply
them to be the ambulance response area, the division attains
equitability.

The second application is related to network cell count
methods (Shiode and Okabe, 2004). Cell count methods
(Haggett, 1965; Diggle, 2003) are usually applied to an
area. The area is divided into same sized and same shaped
sub-areas called cells. For the spatial analysis, we count
the number of specific points (e.g. retail stores) in the cells.
From that data, statistical and quantitative results about the
point pattern can be computed. However, as in the case
of the equitable load model, in many cases cells should be
on the road network. The network cell count method uses

equal-sized sub-networks, called network cells, and counts
the number of specific points on the edges of each sub-
network. This method requires the division of the network
into equal-sized sub-networks.

There is little existing research related to this problem.
To our knowledge, only Shiode and Okabe (2004) have ex-
amined it. They proposed a method to obtain several equal-
sized sub-networks from an inner part of a given network.
They consider two types of cells: a “proper cell” which
has a given total edge length and is used in the network
cell counting method and an “improper cell” which is a pe-
ripheral cell not used for cell counting. Their approach is
based on a greedy algorithm where one proper cell is ex-
tracted from the given network at a time. In the process,
this approach leaves behind many improper cells in the form
of small sub-networks that do not have a given total edge
length. As a result, many improper cells exist, and the num-
ber of proper cells to be extracted cannot be determined be-
forehand. Such properties of their method are serious draw-
backs to the network cell count method as compared to the
spatial cell count method.

In this paper, we adopt a different approach to computing
network divisions. Given a positive integer p, we calculate
the average total edge length of p sub-networks from the
total edge length of the network. Given this value, we
minimize the sum of the absolute values of the differences
between the average and the sum of the edge lengths of each
sub-network. We expect that the objective function value
should be equal to zero, meaning that the p sub-networks
are equally divided.

We propose an algorithm to solve this problem. The al-
gorithm has two stages: the first obtains a rough approxi-
mate solution, and the second completes the solution. We
use a network Voronoi diagram in the first stage, and a lin-
ear programming method for the second stage. The net-
work Voronoi diagram (Okabe et al., 2008) is a generalized

73



74 T. Furuta et al.

Fig. 1. Boundary point divides a connected network N into two
equal-sized connected sub-networks N1 and N2.

version of the ordinary Voronoi diagram in the Euclidean
plane (Okabe et al., 2000). The network Voronoi diagram
has a set of vertices called Voronoi generators that divide
the network into sub-networks. Each sub-network is the set
of points nearest to a given generator in the network, where
nearness is measured as the shortest distance along the net-
work. Linear programming (Hillier and Lieberman, 2005)
is used to minimize a linear objective function of continu-
ous real variables, subject to linear constraints.

This paper is organized as follows. In Sec. 2, we state the
problem more formally and introduce the network Voronoi
diagram that is used for our algorithm. In Sec. 3, we in-
vestigate the details of our algorithm. In Sec. 4, we show
computational results using actual road network data. Fi-
nally, we give concluding remarks in Sec. 5.

2. Problem Statement
In this paper, we suppose the following network division

problem. Given a connected network N (V, E) with a set
of vertices V = {v1, · · · , vn} and a set of edges E , our
objective is to divide it into p equal-sized connected sub-
networks, where p is a given positive integer. We use F(N )

as the total edge length of N . Using these values, we can
calculate the average total edge length F(N )/p of each sub-
network. The objective of the problem is to find p equal-
sized sub-networks Nk , that is,

F(Nk) = F(N )

p
, Nk ∩ N j = ∅, k 	= j, k, j = 1, · · · , p

(1)

where each sub-network is connected and has no points
in common with another sub-network except at boundary
points.

Figure 1 shows a trivial example of the problem. A con-
nected network N is divided into two equal-sized connected
sub-networks N1 and N2 by a boundary point. We have
two remarks concerning this problem. First, the division
that satisfies Eq. (1) is not necessarily unique, and in many
cases there will be multiple solutions to the problem. Sec-
ond, in some cases there will be no solutions, as in the case
of Fig. 2.

We consider the problem of finding p equal-sized sub-

Fig. 2. Network has three edges with equal length. This network cannot
be divided into two equal-sized connected sub-networks.

networks as the following optimization problem:

minimize
∑

k=1,··· ,p

∣∣∣∣ F(N )

p
− F(Nk)

∣∣∣∣ , (2)

subject to Nk ∩ N j = ∅, k 	= j, k, j = 1, · · · , p.

(3)

To solve the division problem, we need to retain the con-
nectivity of each sub-network while having no intersection
between them, except at boundary points. Under these con-
ditions, our proposed algorithm uses a network Voronoi di-
agram (Okabe et al., 2008) to find equal-sized connected
sub-networks. Given a network and a set of generators
on the network, the network Voronoi diagram defined by
the generator set is a partition of the network. The parti-
tion consists of connected sub-networks called Voronoi sub-
networks. Each point on a Voronoi sub-network is the clos-
est to the generator point of the sub-network of all generator
points, where closeness is determined as the shortest dis-
tance on the network, not on the Euclidean plane. In other
words, each generator defines its associated Voronoi sub-
network, which is a connected network surrounding it. We
use the following notation to formally define the diagram:

G = {g1, · · · , gp} : a set of generators (G ⊆ V ),
V (gk) : the Voronoi sub-network of generator gk ,
t : a point along an edge of N which may be a vertex of

N ,
d(vi , t) : the shortest path distance on the network from vi

to t .

The definition of Voronoi sub-network V (gk) is as follows,

V (gk) = {t | d(gk, t) ≤ d(g j , t), ∀ j}, k = 1, · · · , p. (4)

Then the set {V (g1), · · · , V (gp)} is the network Voronoi
diagram. Using the diagram, the network is divided into
Voronoi sub-networks. The boundary point b between two
Voronoi sub-networks V (gk) and V (g j ) satisfies the follow-
ing condition,

d(gk, b) = d(g j , b). (5)

Network Voronoi diagrams can be easily computed using
the extended shortest path algorithm (Okabe et al., 2008),
which is based on Dijkstra’s algorithm (Dijkstra, 1959).
The shortest path tree is defined as the set of edges connect-
ing all vertices such that the sum of the edge lengths from
a given start vertex to each vertex is minimized. The tree
spans all vertices, but does not cover all edges. To construct
the network Voronoi diagram, all points on the uncovered
edges must be assigned to their closest generators. Okabe



A Voronoi Heuristic Approach to Dividing Networks into Equal-Sized Sub-Networks 75

Fig. 3. Example of adjustment of boundary points. Boundary point is
moved to achieve equal-sized division.

Fig. 4. Decision variable xi decides the value of movement of boundary
point of edge i .

et al. (2008) extend the tree to cover those edges that are
not covered by the tree and the shortest path algorithm to
compute the extended tree. An outline of the extended al-
gorithm is as follows. First, we add a dummy vertex that
connects all generators as the start vertex of the shortest
path algorithm. Next, we compute the extended shortest
path algorithm from the dummy vertex until all points on
the network are assigned to a generator. The property of
the shortest path algorithm that decides the shortest path in
order of proximity ensures that each point is assigned to its
closest generator (see Okabe et al. (2008) for details of this
algorithm). In the next section, we propose an algorithm
for computing the equal-sized division problem using the
diagram.

3. Solution Algorithm
We developed a two-stage algorithm for computing the

equal-sized sub-network mentioned above. In the first
stage, to achieve an approximately equal-sized division,
we consider the network Voronoi diagram that minimizes
Eq. (2). To define the network Voronoi diagram, we need to
obtain the p generators that generate such a diagram. The
following local search algorithm is used for finding the gen-
erators.

[Voronoi Heuristics]

Step 1. Initialization

Randomly select p generators gk , k =
1, · · · , p from among the vertices in N ,

and construct V (gk). Set U = ∞ to retain
the best value of the objective.

Step 2. Termination condition

Repeat 3 until U does not decrease.

Step 3. Search generators

For each k, select a vertex g′
k in V (gk),

and construct the network Voronoi diagram
by g1, · · · , g′

k, · · · , gp. If g′
k gives the min-

imum of

u =
∑

i=1,··· ,p,i 	=k

∣∣∣∣ F(N )

p
− F(V (gi ))

∣∣∣∣
+

∣∣∣∣ F(N )

p
− F(V (g′

k))

∣∣∣∣ (6)

then set gk = g′
k and U = u.

Step 4. Follow up

In each k, Nk = Vk .

In Step 3 we search for a vertex in the set of vertices V (gk)

that makes the largest improvement. The output of this al-
gorithm is a local optimum. Then we adopt a multiple start
method, that is, we start Voronoi heuristics with various
randomly selected p generators and confirm that our solu-
tion is the best of them. The solution is not exact in many
cases however, and so we consider the following finishing
up method.

The network Voronoi diagram has many boundary points
that represent the boundary between Voronoi sub-networks
(Eq. (5)). We adjust the position of the boundary points
to complete the solutions (Fig. 3). When boundary points
are adjusted, they are moved only along their edge to create
equal-sized divisions. We formulate the adjustment prob-
lem as a mathematical programming formulation. To de-
scribe the formulation, the following additional notations
are used.

B : the index set of edges having a boundary point,
ei : the length of edge i ∈ B,
li j : the length from a boundary point to the end vertex

j = 1, 2 of edge i (ei = li1 + li2),
Mi jk : equals 1 if vertex j of edge i is assigned to sub-

network Nk , otherwise 0,
Lk : the sum of the length of edges which have no bound-

ary point in Nk .

Furthermore, we use decision variables xi such that the
boundary point of edge i moves xi from its current position
(Fig. 4). Then the adjustment problem can be formulated as
follows:

minimize
∑

k=1,··· ,p

∣∣∣∣∣ F(N )

p
−

{
Lk +

∑
i∈B

Mi1k(li1 + xi )

+
∑
i∈B

Mi2k(li2 − xi )

}∣∣∣∣∣ , (7)



76 T. Furuta et al.

Fig. 5. Results of Voronoi heuristics. Large circles denote Voronoi generators and small circles denote boundary points between sub-networks. Number
of vertices is 400 and p = 3.

Fig. 6. Results of the linear programming method. Black circles denote boundary points between sub-networks.

subject to 0 ≤ li1 + xi ≤ ei , i ∈ B, (8)

xi ∈ R, i ∈ B. (9)

The objective function (7) is the sum of the absolute values
of the difference between the average total edge length and
the total edge length of each sub-network whose boundary
points are moved by xi . Constraints (8) ensure that the
boundary point moves only along the edge.

This mathematical formulation is not an ordinary linear
programming formulation. Generally, it is not easy to solve
this kind formulation. However, this formulation can be
easily transformed into a linear programming formulation
using the additional decision variables zk , such that

∣∣∣∣ F(N )

p

−
{

Lk +
∑
i∈B

Mi1k(li1 + xi ) +
∑
i∈B

Mi2k(li2 − xi )

}∣∣∣∣∣ ≤ zk .

(10)

To minimize the sum of zk is equivalent to minimizing
the objective function. Therefore, we can transform the
formulation to a linear programming formulation using zk

as follows:

minimize

∑
k=1,··· ,p

zk, (11)

subject to
F(N )

p

−
{

Lk +
∑
i∈B

Mi1k(li1 + xi ) +
∑
i∈B

Mi2k(li2 − xi )

}

≤ zk,

k = 1, · · · , p, (12)

F(N )

p

−
{

Lk +
∑
i∈B

Mi1k(li1 + xi ) +
∑
i∈B

Mi2k(li2 − xi )

}

≥ −zk,

k = 1, · · · , p, (13)

zk ≥ 0, zk ∈ R, k = 1, · · · , p, (14)

in addition to (8) and (9).
We use the Voronoi heuristics with multiple starts to get

an approximate solution, and then the linear programming
formulation to improve the solution.

4. Computational Experiments
Programs were coded in Java using the optimization soft-

ware package ILOG CPLEX 10.0 to solve the problem
which was formulated as a linear programming problem.
The programs were run on a Pentium 4, 2.53 GHz with 512
MB RAM. We made ten different network types for our ex-
periments using the actual road network of Nagoya City in



A Voronoi Heuristic Approach to Dividing Networks into Equal-Sized Sub-Networks 77

Table 1. Details for 3 types of networks (500, 700, and 900 vertices).

id n p F(N )/p vor obj. vor time (s) lp obj. lp time (s)

1 500 5 1093.16 28.12 54.67 0.00 0.34

2 500 5 1147.31 39.39 59.30 0.00 0.36

3 500 5 1078.64 25.29 52.91 0.00 0.34

4 500 5 1096.20 29.45 52.03 0.00 0.36

5 500 5 1117.82 21.80 57.27 0.00 0.34

1 500 15 364.39 93.32 77.41 0.00 0.38

2 500 15 382.44 111.88 80.55 0.00 0.39

3 500 15 359.55 122.90 76.86 0.00 0.38

4 500 15 365.40 99.84 76.81 0.00 0.38

5 500 15 372.61 85.08 75.02 0.00 0.38

1 500 25 218.63 137.34 88.08 0.00 0.41

2 500 25 229.46 187.31 94.02 0.00 0.42

3 500 25 215.73 125.95 94.00 0.00 0.41

4 500 25 219.24 146.53 90.30 0.00 0.42

5 500 25 223.56 248.62 97.69 34.19 0.39

1 700 5 1555.46 25.92 111.75 0.00 0.38

2 700 5 1593.01 37.46 114.08 0.00 0.38

3 700 5 1515.82 52.55 110.70 0.00 0.38

4 700 5 1497.68 30.48 109.30 0.00 0.39

5 700 5 1543.12 23.99 114.33 0.00 0.36

1 700 15 518.49 137.08 149.70 0.00 0.41

2 700 15 531.00 101.90 158.92 0.00 0.41

3 700 15 505.27 121.65 160.39 0.00 0.41

4 700 15 499.23 148.44 149.31 0.00 0.41

5 700 15 514.37 147.17 151.09 0.00 0.41

1 700 25 311.09 175.47 181.47 0.00 0.41

2 700 25 318.60 169.49 179.34 0.00 0.45

3 700 25 303.16 238.59 177.61 0.00 0.42

4 700 25 299.54 224.43 169.56 0.00 0.42

5 700 25 308.62 186.34 184.42 0.00 0.44

1 900 5 2033.46 28.79 203.58 0.00 0.36

2 900 5 2103.14 31.76 192.20 0.00 0.34

3 900 5 2070.65 20.37 192.53 0.00 0.34

4 900 5 2111.33 48.37 209.63 0.00 0.38

5 900 5 2061.26 47.74 188.94 0.00 0.36

1 900 15 677.82 187.11 305.09 0.00 0.39

2 900 15 701.05 147.25 274.31 0.00 0.39

3 900 15 690.22 171.51 268.78 25.22 0.39

4 900 15 703.78 177.36 278.89 22.24 0.39

5 900 15 687.09 107.12 272.61 0.00 0.41

1 900 25 406.69 263.66 339.34 90.46 0.45

2 900 25 420.63 253.22 327.80 0.00 0.44

3 900 25 414.13 322.99 326.50 22.24 0.44

4 900 25 422.27 283.24 331.86 6.99 0.44

5 900 25 412.25 332.62 334.28 15.95 0.47

Aichi prefecture. We select a vertex of the original net-
work randomly. Then we extract it with its incident edges
and neighboring vertices and construct the sample network.
The number of vertices of each sample network varies from
100 to 1000. We made 5 examples for each type. Figures 5
and 6 show an example of our computational results for a
network having 400 vertices with p = 3. Figure 5 shows
the computational results of the Voronoi heuristics, where

the large circles denote the Voronoi generators when the ap-
proximate solution is found. Figure 6 shows the results of
the linear programming method using the results shown in
Fig. 5. Boundary points are moved to achieve the equal-
sized sub-network. In this case, the network is divided into
equal-sized sub-networks exactly.

Table 1 shows experimental results for networks with
500, 700, and 900 vertices. The column labeled “id” shows



78 T. Furuta et al.

Table 2. Summary of experimental results for 100 to 500 vertices.

Voronoi Heuristics Linear Programming

% over the ave. % over the ave.

n p max-min max-max sd time (s) max-min max-max sd time (s) # exact

100 5 0.56 3.05 2.84 2.24 0.00 0.00 0.00 0.35 5

100 10 0.66 7.83 3.37 2.95 0.00 0.00 0.00 0.36 5

100 15 1.01 14.29 3.97 3.82 0.00 0.00 0.00 0.37 5

100 20 1.85 29.19 5.00 4.17 0.00 15.05 0.93 0.40 2

100 25 0.95 46.06 5.22 4.55 0.00 25.80 1.17 0.42 1

100 30 1.45 42.39 5.28 4.50 0.00 34.78 1.60 0.39 2

200 5 0.47 2.78 4.50 9.66 0.00 0.00 0.00 0.35 5

200 10 0.34 5.42 5.51 12.36 0.00 2.29 0.49 0.36 4

200 15 0.22 10.90 6.07 14.41 0.00 2.36 0.48 0.37 3

200 20 0.19 11.66 4.90 16.26 0.00 9.55 1.02 0.38 3

200 25 0.70 15.39 5.23 17.41 0.00 24.02 1.86 0.39 2

200 30 0.65 29.17 5.13 18.52 0.00 31.43 2.02 0.41 2

300 5 0.19 2.23 5.43 20.48 0.00 0.00 0.00 0.35 5

300 10 0.34 4.49 5.90 25.60 0.00 0.79 0.23 0.37 4

300 15 0.47 7.25 6.06 30.05 0.00 7.59 1.24 0.37 4

300 20 0.49 11.99 6.54 32.79 0.00 14.46 2.49 0.38 2

300 25 0.34 11.60 6.24 34.99 0.00 15.41 2.38 0.39 1

300 30 0.30 17.33 7.24 36.40 0.00 22.93 4.03 0.41 0

400 5 0.10 1.33 4.32 36.70 0.00 0.00 0.00 0.36 5

400 10 0.38 4.82 7.70 44.55 0.00 0.00 0.00 0.36 5

400 15 0.36 6.14 8.07 50.23 0.00 3.49 0.72 0.37 4

400 20 0.52 9.82 7.71 54.61 0.00 4.28 1.09 0.39 3

400 25 0.59 18.19 8.65 60.72 0.00 17.41 4.29 0.40 2

400 30 0.41 22.48 6.95 63.58 0.00 18.56 1.50 0.41 3

500 5 0.27 1.37 6.75 55.23 0.00 0.00 0.00 0.35 5

500 10 0.37 3.55 8.62 69.44 0.00 0.00 0.00 0.36 5

500 15 0.08 6.02 8.35 77.33 0.00 0.00 0.00 0.38 5

500 20 0.38 8.94 8.18 85.46 0.00 1.80 0.28 0.39 4

500 25 0.29 12.73 8.53 92.82 0.00 7.65 0.84 0.41 4

500 30 0.52 12.09 8.46 97.05 0.00 6.50 1.14 0.45 3

the identifier for each network. The column labeled “n”
shows the number of vertices in the road network. The
columns labeled “vor obj.” and “vor time” show the value
of the objective function at the end of Voronoi heuristics and
the computational time, respectively. The columns labeled
“lp obj.” and “lp time” show the value of the objective func-
tion at the end of our linear programming method and the
computational time, respectively. In the table, the numbers
in the “lp obj.” column are equal to 0. This means that the
network is divided into p equal-sized sub-networks.

Tables 2 and 3 summarize our experimental results. The
results of the Voronoi heuristics and the linear program-
ming method are shown in the columns labeled “Voronoi
Heuristics” and “Linear Programming”, respectively. The
column labeled “max-min” shows the maximum value of{

mink=1,··· ,p

∣∣∣ F(N )

p −F(Nk )

∣∣∣}
F(N )

p

× 100 in five networks. This value

represents the max-min percentage over the average edge
length. The column labeled “max-max” shows the maxi-

mum value of

{
maxk=1,··· ,p

∣∣∣ F(N )

p −F(Nk )

∣∣∣}
F(N )

p

×100 in five networks.

The averages of the standard deviations of the total edge
length of sub-networks over the five networks are shown
in the column labeled “sd”. The column labeled “time
(s)” shows the computational time. In our experiments, the
number of starts of the Voronoi heuristics is 20 and the num-
bers in the column labeled “time (s)” in the column labeled
“Voronoi heuristics” shows the total computational time for
the multiple starts method. The column labeled “# exact”
shows the number of road networks that are divided into
exactly equal-sized sub-networks among the five road net-
works.

The tables show that the linear programming method
improves the solution of Voronoi heuristics drastically.
Many networks were divided into equal-sized sub-networks
within a reasonable computational time, especially for
small values of p. When the value of p is large, the re-
sults of the Voronoi heuristics are not good in some cases,
and we cannot get exact solutions. However, the value of
the standard deviation is very small. Our Voronoi heuristics
are simple local search algorithms and the number of can-



A Voronoi Heuristic Approach to Dividing Networks into Equal-Sized Sub-Networks 79

Table 3. Summary of our experimental results for 600 to 1000 vertices.

Voronoi Heuristics Linear Programming

% over the ave. % over the ave.

n p max-min max-max sd time (s) max-min max-max sd time (s) # exact

600 5 0.20 1.08 7.46 81.34 0.00 0.00 0.00 0.36 5

600 10 0.41 3.84 9.35 103.37 0.00 0.00 0.00 0.36 5

600 15 0.11 8.24 10.61 117.05 0.00 6.68 2.14 0.38 4

600 20 0.68 7.14 10.02 133.11 0.00 1.54 0.29 0.43 4

600 25 0.88 9.04 9.82 134.38 0.00 3.74 0.86 0.44 3

600 30 0.45 14.77 9.42 139.65 0.00 14.73 3.20 0.43 1

700 5 0.12 0.80 7.92 112.03 0.00 0.00 0.00 0.38 5

700 10 0.24 2.45 10.56 139.71 0.00 0.00 0.00 0.39 5

700 15 0.16 3.71 10.48 153.88 0.00 0.00 0.00 0.41 5

700 20 0.13 5.94 10.24 167.69 0.00 0.00 0.00 0.42 5

700 25 0.19 7.21 9.72 178.48 0.00 0.00 0.00 0.43 5

700 30 0.17 8.76 9.95 188.29 0.00 1.28 1.05 0.43 3

800 5 0.12 1.24 7.48 149.27 0.00 0.00 0.00 0.37 5

800 10 0.41 3.49 11.99 180.35 0.00 0.00 0.00 0.39 5

800 15 0.48 6.02 12.55 212.84 0.00 0.00 0.00 0.38 5

800 20 0.21 5.92 11.82 229.22 0.00 0.27 0.08 0.40 4

800 25 0.33 11.81 12.54 240.43 0.00 7.25 2.44 0.44 3

800 30 0.15 11.16 10.63 264.86 0.00 6.23 0.87 0.44 4

900 5 0.10 0.82 7.99 197.38 0.00 0.00 0.00 0.36 5

900 10 0.20 3.84 13.71 252.34 0.00 0.00 0.00 0.38 5

900 15 0.07 6.20 13.13 279.94 0.00 1.83 1.61 0.39 3

900 20 0.56 6.69 13.34 305.72 0.00 0.00 0.00 0.40 5

900 25 0.71 9.69 14.17 331.96 0.00 8.07 2.91 0.45 1

900 30 0.50 11.93 12.38 340.15 0.00 0.65 0.15 0.44 3

1000 5 0.15 0.88 7.25 239.84 0.00 0.00 0.00 0.36 5

1000 10 0.28 2.68 12.22 319.42 0.00 0.00 0.00 3.18 5

1000 15 0.37 4.93 13.56 355.17 0.00 0.00 0.00 0.40 5

1000 20 0.41 7.67 13.70 387.08 0.00 1.66 0.53 1.81 4

1000 25 0.21 8.62 14.04 408.19 0.00 11.86 5.71 0.50 1

1000 30 0.47 18.22 14.68 425.99 0.00 15.76 5.73 0.44 1

didate vertices in each iteration is dependent on the number
of vertices of Voronoi sub-networks. The average number
of vertices is small in that case.

5. Conclusions
We proposed a new approach for the equal-sized net-

work division problem. The problem is to find equal-sized
connected sub-networks within a given connected network.
First, the problem is transformed into an optimization prob-
lem, where the objective is to minimize the sum of the ab-
solute values of the difference between the average size and
the size of each sub-network. We designed a heuristic al-
gorithm having two stages. In the first stage, the network
Voronoi diagram is used to compute the approximate divi-
sion of a network. We gave a linear programming formula-
tion to improve the division. Our approach performed very
well in computational experiments, where many networks
were divided into equal-sized sub-networks exactly, and we
obtained approximate solutions for the other networks.

References
Baron, O., Berman, O., Krass, D. and Wang, Q. (2007) The equitable loca-

tion problem on the plane, European Journal of Operational Research,
183(2), 578–590.

Diggle, P. J. (2003) Statistical Analysis of Spatial Point Patterns, 2nd Ed.,
Oxford University Press, New York.

Dijkstra, E. W. (1959) A note on two problems in connexion with graphs,
Numerische Mathematik, 1, 269–271.

Haggett, P. (1965) Locational Analysis in Human Geography, Edward
Arnold, London.

Hillier, F. S. and Lieberman, G. J. (2005) Introduction to Operations Re-
search, 8th Ed., McGraw-Hill, New York.

Okabe, A., Boots, B., Sugihara, K. and Chiu, S. N. (2000) Spatial Tessel-
lations: Concepts and Applications of Voronoi Diagrams, 2nd Ed., John
Wiley & Sons, New York.

Okabe, A., Satoh, T., Furuta, T., Suzuki, A. and Okano, K. (2008) Gen-
eralized network voronoi diagrams: Concepts, computational methods
and applications, International Journal of Geographical Information
Science, 22, 965–994.

Shiode, S. and Okabe, A. (2004) Analysis of point patterns using the
network cell count method, GIS—Theory and Applications—, 12, 57–
66 (in Japanese).

Suzuki, A. and Drezner, Z. (2008) The minimum equitable radius location
problem with continuous demand, European Journal of Operational
Research, doi:10.1016/j.ejor.2008.01.022.


